|
|
A001068
|
|
a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5.
|
|
25
|
|
|
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)
Proof:
arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)
= 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)
= 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),
and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)
|
|
LINKS
|
|
|
FORMULA
|
contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008
a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.
G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
a(n) = n + floor(n/4). (End)
E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021
|
|
MAPLE
|
|
|
MATHEMATICA
|
#+{0, 1, 2, 3}&/@(5*Range[0, 20])//Flatten (* or *) Complement[Range[0, 103], 5*Range[20]-1] (* Harvey P. Dale, Dec 03 2023 *)
|
|
PROG
|
(PARI) a(n)=5*n\4 /* or, cf. comment: */
|
|
CROSSREFS
|
Cf. A001622, A002265, A030308, A047203, A110255, A110256, A110257, A110258, A110259, A110260, A177704 (first differences), A249547.
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|