login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5. 24
0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From M. F. Hasler, Oct 21 2008: (Start)

Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov)

Proof:

arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...)

            = 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...)

            = 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...),

and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End)

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Paul Erdős, Some recent problems and results in graph theory, Discr. Math., Vol. 164, No. 1-3 (1997), pp. 81-85.

Wikipedia, Continued fraction for arctangent.

R. Witula, P. Lorenc, M. Rozanski and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, (2014), pp. 17-34.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).

FORMULA

contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008

a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011.

From Bruno Berselli, Oct 17 2011:  (Start)

G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)).

a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8.

a(-n) = -A047203(n+1). (End)

From Wesley Ivan Hurt, Sep 17 2015: (Start)

a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.

a(n) = n + floor(n/4). (End)

a(n) = n + A002265(n). - Robert Israel, Sep 17 2015

E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016

Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

MAPLE

A001068:=n->floor(5*n/4); seq(A001068(k), k=0..100); # Wesley Ivan Hurt, Nov 07 2013

MATHEMATICA

Table[Floor[5*n/4], {n, 0, 120}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)

PROG

(PARI) a(n)=5*n\4 /* or, cf. comment: */

a(n)=contfrac(atan(1/n))[4] \\ M. F. Hasler, Oct 21 2008

(Magma) [Floor(5*n/4): n in [0..80]]; // Vincenzo Librandi, Nov 13 2011

CROSSREFS

Cf. A001622, A002265, A030308, A047203, A110255, A110256, A110257, A110258, A110259, A110260, A177704 (first differences), A249547.

Sequence in context: A028798 A138309 A184514 * A039145 A242491 A038129

Adjacent sequences:  A001065 A001066 A001067 * A001069 A001070 A001071

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Sep 19 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 18:50 EDT 2022. Contains 357062 sequences. (Running on oeis4.)