The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001068 a(n) = floor(5*n/4), numbers that are congruent to {0, 1, 2, 3} mod 5. 25
 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 87, 88 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From M. F. Hasler, Oct 21 2008: (Start) Also, for n>0, the 4th term (after [0,n,3n]) in the continued fraction expansion of arctan(1/n). (Observation by V. Reshetnikov) Proof: arctan(1/n) = (1/n) / (1 + (1/n)^2/( 3 + (2/n)^2/( 5 + (3/n)^2/( 7 + ...)...) = 1 / ( n + 1/( 3n + 4/( 5n + 9/( 7n + 25/(...)...) = 1 / ( n + 1/( 3n + 1/( 5n/4 + (9/4)/( 7n + 25/(...)...), and the term added to 5n/4, (9/4)/(7n+...) = (1/4)*9/(7n+...) is less than 1/4 for all n>=2. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Paul Erdős, Some recent problems and results in graph theory, Discr. Math., Vol. 164, No. 1-3 (1997), pp. 81-85. Wikipedia, Continued fraction for arctangent. R. Witula, P. Lorenc, M. Rozanski and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, (2014), pp. 17-34. Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA contfrac( arctan( 1/n )) = 0 + 1/( n + 1/( 3n + 1/( a(n) + 1/(...)))). - M. F. Hasler, Oct 21 2008 a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=2 and b(k)=5*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011. From Bruno Berselli, Oct 17 2011: (Start) G.f.: x*(1+x+x^2+2*x^3)/((1+x)*(1-x)^2*(1+x^2)). a(n) = (10*n+2*(-1)^((n-1)n/2)+(-1)^n-3)/8. a(-n) = -A047203(n+1). (End) From Wesley Ivan Hurt, Sep 17 2015: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>4. a(n) = n + floor(n/4). (End) a(n) = n + A002265(n). - Robert Israel, Sep 17 2015 E.g.f.: (sin(x) + cos(x) + (5*x - 2)*sinh(x) + (5*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 06 2016 Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/4 + sqrt(5)*log(phi)/10 + sqrt(5-2*sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021 MAPLE A001068:=n->floor(5*n/4); seq(A001068(k), k=0..100); # Wesley Ivan Hurt, Nov 07 2013 MATHEMATICA Table[Floor[5*n/4], {n, 0, 120}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *) #+{0, 1, 2, 3}&/@(5*Range[0, 20])//Flatten (* or *) Complement[Range[0, 103], 5*Range[20]-1] (* Harvey P. Dale, Dec 03 2023 *) PROG (PARI) a(n)=5*n\4 /* or, cf. comment: */ a(n)=contfrac(atan(1/n))[4] \\ M. F. Hasler, Oct 21 2008 (Magma) [Floor(5*n/4): n in [0..80]]; // Vincenzo Librandi, Nov 13 2011 CROSSREFS Cf. A001622, A002265, A030308, A047203, A110255, A110256, A110257, A110258, A110259, A110260, A177704 (first differences), A249547. Sequence in context: A028798 A138309 A184514 * A039145 A242491 A038129 Adjacent sequences: A001065 A001066 A001067 * A001069 A001070 A001071 KEYWORD nonn,easy,changed AUTHOR N. J. A. Sloane EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 13:16 EST 2023. Contains 367727 sequences. (Running on oeis4.)