login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.
(Formerly M2226 N0884)
254
0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013

Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..10000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

H. Bottomley, Illustration of initial terms

Paul Erdős, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204.

Paul Erdos, Andrew Granville, Carl Pomerance and Claudia Spiro, On the normal behavior of the iterates of some arithmetic functions, Analytic number theory, Birkhäuser Boston, 1990, pp. 165-204. [Annotated copy with A-numbers]

P. Pollack, C. Pomerance, Some problems of Erdos on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, 2015, to appear.

Carl Pomerance and Hee-Sung Yang, Variant of a theorem of Erdos on the sum-of-proper-divisors function, Math. Comp., to appear (2014).

Primefan, Sums of Restricted Divisors for n=1 to 1000

F. Richman, Aliquot series:Abundant,deficient,perfect

Eric Weisstein's World of Mathematics, Restricted Divisor Function

Eric Weisstein's World of Mathematics, Divisor Function

Index entries for "core" sequences

FORMULA

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006

a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005

a(n) = A155085(-n). - Michael Somos, Sep 20 2011

Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8,...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008

a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013

a(n) = sum_{i=1..floor(n/2)} i*(1-ceil(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013

a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013

Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016

EXAMPLE

x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...

For n=44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.

Related concepts: (Start)

From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.

Abundant numbers: a(12) = 16, a(18) = 21. See A005101.

Perfect numbers: a(6) = 6, a(28) = 28. See A000396.

Amicable numbers: a(220) = 284, a(284) = 220. See A259180.

Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)

MAPLE

with(numtheory); [ seq(sigma(n)-n, n=1..100) ];

MATHEMATICA

Table[ Plus @@ Select[ Divisors[ n ], #<n & ], {n, 1, 90} ]

Table[Plus @@ Divisors[n] - n, {n, 1, 90}] (* Zak Seidov, Sep 10 2009 *)

Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)

PROG

(PARI) {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */

(MuPad) numlib::sigma(n)-n$ n=1..81 # Zerinvary Lajos, May 13 2008

(Haskell)

a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011

(MAGMA) [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015

CROSSREFS

Row sums of A141846. - Gary W. Adamson, Jul 11 2008

Row sums of A176891. - Gary W. Adamson, May 02 2010

Row sums of A176079. - Mats Granvik, May 20 2012

a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013

Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014

For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014

A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015

Cf. A032741, A000203, A048050, A000593, A034090, A034091, A027750.

Cf. A051953, A051731.

Cf. A037020 (primes), A053868, A053869 (odd and even terms).

Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).

Cf. A007956 (products of proper divisors).

Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Sequence in context: A117552 A069250 * A173455 A168111 A109646 A199783

Adjacent sequences:  A001062 A001063 A001064 * A001066 A001067 A001068

KEYWORD

nonn,core,easy,nice,changed

AUTHOR

N. J. A. Sloane, R. K. Guy

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 22 20:44 EDT 2017. Contains 292346 sequences.