|
|
A027751
|
|
Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention.
|
|
58
|
|
|
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 6, 9, 1, 1, 2, 4, 5, 10, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 12, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 1, 1, 2, 3, 5, 6, 10, 15, 1, 1, 2, 4, 8, 16, 1, 3, 11, 1, 2, 17, 1, 5, 7, 1, 2, 3, 4, 6, 9, 12, 18
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Or, take the list 1,2,3,4,... of natural numbers (A000027) and replace each number by its proper divisors.
|
|
LINKS
|
|
|
EXAMPLE
|
The irregular triangle T(n,k) begins:
n\k 1 2 3 4 5 ...
1: 1 (by convention)
2: 1
3: 1
4: 1 2
5: 1
6: 1 2 3
7: 1
8: 1 2 4
9: 1 3
10: 1 2 5
11: 1
12: 1 2 3 4 6
13: 1
14: 1 2 7
15: 1 3 5
16: 1 2 4 8
17: 1
18: 1 2 3 6 9
19: 1
20: 1 2 4 5 10
|
|
MAPLE
|
with(numtheory):
T:= n-> sort([(divisors(n) minus {n})[]])[]: T(1):=1:
|
|
MATHEMATICA
|
Table[ Divisors[n] // Most, {n, 1, 36}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Jun 10 2013 *)
|
|
PROG
|
(Haskell)
a027751 n k = a027751_tabf !! (n-1) !! (k-1)
a027751_row n = a027751_tabf !! (n-1)
a027751_tabf = [1] : map init (tail a027750_tabf)
(Python)
from sympy import divisors
def a(n): return [1] if n==1 else divisors(n)[:-1]
(PARI) row(n) = if (n==1, [1], my(d = divisors(n)); vector(#d-1, k, d[k])); \\ Michel Marcus, Apr 30 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,tabf
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|