|
|
A032741
|
|
a(0) = 0; for n > 0, a(n) = number of proper divisors of n (divisors of n which are less than n).
|
|
196
|
|
|
0, 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 6, 3, 7, 1, 5, 3, 7, 1, 11, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 11, 3, 3, 3, 7, 1, 11, 3, 5, 3, 3, 3, 11, 1, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
Number of d < n which divide n.
Call an integer k between 1 and n a "semi-divisor" of n if n leaves a remainder of 1 when divided by k, i.e., n == 1 (mod k). a(n) gives the number of semi-divisors of n+1. - Joseph L. Pe, Sep 11 2002
a(n+1) is also the number of k, 0 <= k <= n-1, such that C(n,k) divides C(n,k+1). - Benoit Cloitre, Oct 17 2002
a(n+1) is also the number of factors of the n-th degree polynomial x^n + x^(n-1) + x^(n-2) + ... + x^2 + x + 1. Example: 1 + x + x^2 + x^3 = (1+x)(1+x^2) implies a(4)=2.
a(n) is also the number of factors of the n-th Fibonacci polynomial. - T. D. Noe, Mar 09 2006
Number of partitions of n+1 into exactly one q and at least one q+1. Example: a(12)=5; indeed, we have 13 = 7 + 6 = 5 + 4 + 4 = 4 + 3 + 3 + 3 = 3 + 2 + 2 + 2 + 2 + 2 = 2 + 11*1.
For n > 0, a(n) is the number of strong divisors of n. - Omar E. Pol, May 03 2015
a(n) is also the number of factors of the (n-1)-th degree polynomial ((x+1)^n-1)/x. Example: for n=6, ((x+1)^6-1)/x) = x^5 + 6*x^4 + 15*x^3 + 20*x^2 + 15*x + 6 = (2+x)(1+x+x^2)(3+3x+x^2) implies a(6)=3. - Federico Provvedi, Oct 09 2018
|
|
REFERENCES
|
André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, page 5.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Sum_{i>=1} (1-x^i+x^(2*i))/(1-x^i). - Jon Perry, Jul 03 2004
G.f.: 2*Sum_{n>=1} Sum_{d|n} log(1 - x^(n/d))^(2*d) / (2*d)!. - Paul D. Hanna, Aug 21 2014
a(n) = Sum_{k=1..n-1} binomial((n-1) mod k, k-1). - Wesley Ivan Hurt, Sep 26 2016
a(n) = Sum_{i=1..n-1} floor(n/i)-floor((n-1)/i). - Wesley Ivan Hurt, Nov 15 2017
Sum_{k=1..n} a(k) ~ n*log(n) + 2*(gamma - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
|
|
EXAMPLE
|
a(6) = 3 since the proper divisors of 6 are 1, 2, 3.
|
|
MAPLE
|
if n = 0 then
0 ;
else
numtheory[tau](n)-1 ;
end if;
|
|
MATHEMATICA
|
Prepend[DivisorSigma[0, Range[99]]-1, 0] (* Jayanta Basu, May 25 2013 *)
|
|
PROG
|
(PARI) a(n) = if(n<1, 0, numdiv(n)-1)
(PARI) {a(n)=polcoeff(2*sum(m=1, n\2+1, sumdiv(m, d, log(1-x^(m/d) +x*O(x^n) )^(2*d)/(2*d)!)), n)} \\ Paul D. Hanna, Aug 21 2014
(Haskell)
a032741 n = if n == 0 then 0 else a000005 n - 1
(GAP) Concatenation([0], List([1..100], n->Tau(n)-1)); # Muniru A Asiru, Oct 09 2018
(Python)
from sympy import divisor_count
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Typos in definition corrected by Omar E. Pol, Dec 13 2008
|
|
STATUS
|
approved
|
|
|
|