login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A032743
Super-2 Numbers (2 * n^2 contains substring '22' in its decimal expansion).
9
19, 31, 69, 81, 105, 106, 107, 119, 127, 131, 169, 181, 190, 219, 231, 247, 269, 281, 310, 318, 319, 331, 332, 333, 334, 335, 336, 337, 338, 339, 348, 369, 381, 419, 431, 454, 469, 481, 511, 519, 531, 558, 569, 581, 601, 619, 631, 669, 679, 681, 690, 715
OFFSET
1,1
COMMENTS
For any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. Moreover, the first four terms satisfy 2*a(n)^2 == 22 (mod 100), therefore any number ending in 19, 31, 69 or 81 (possibly followed by trailing '0's) is in the sequence. - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024
REFERENCES
C. A. Pickover, "Keys to Infinity", New York: Wiley, p. 7, 1995.
LINKS
Giovanni Resta, super-d numbers, personal web site "Numbers Aplenty", 2013
Eric Weisstein's World of Mathematics, Super-d Number.
MATHEMATICA
Select[Range[1000], MemberQ[Partition[IntegerDigits[2#^2], 2, 1], {2, 2}]&] (* Harvey P. Dale, May 09 2012 *)
Select[Range[750], SequenceCount[IntegerDigits[2#^2], {2, 2}]>0&] (* Harvey P. Dale, May 13 2022 *)
PROG
(PARI) select( {is_A032743(n, d=2, m=10^d, r=m\9*d)=n=d*n^d; until(r>n\=10, n%m==r && return(1))}, [0..999]) \\ M. F. Hasler, Jul 16 2024
(Python) is_A032743=lambda n, d=2: str(d)*d in str(d*n**d) # M. F. Hasler, Jul 16 2024
CROSSREFS
Cf. A014569 (similar for d=3), A032744 - A032749 (similar for d=4, ..., 9).
Sequence in context: A033212 A104227 A274507 * A106861 A107168 A243450
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
STATUS
approved