login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A014569
Super-3 Numbers (3n^3 contains substring '333' in its decimal expansion).
16
261, 462, 471, 481, 558, 753, 1036, 1046, 1471, 1645, 1752, 1848, 1923, 1926, 1968, 2031, 2231, 2232, 2363, 2395, 2471, 2591, 2610, 3058, 3087, 3148, 3163, 3172, 3181, 3471, 3494, 3542, 3851, 3884, 4143, 4269, 4314, 4471, 4527, 4554, 4620, 4710, 4732
OFFSET
1,1
COMMENTS
For any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. More interestingly, all numbers N == 471 (mod 1000) are in the sequence, since 471^3*3 == 333 (mod 1000). - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024
REFERENCES
C. A. Pickover, Keys to Infinity. New York: Wiley, p. 7, 1995.
LINKS
Giovanni Resta, super-d numbers, personal web site "Numbers Aplenty", 2013.
Eric Weisstein's World of Mathematics, Super-d Number.
FORMULA
n < a(n) < 200n for n > 2. - Charles R Greathouse IV, Dec 04 2024
EXAMPLE
1752 is in the sequence since 3 * 1752^3 = 161'333'13024.
MATHEMATICA
Select[Range[5000], MemberQ[Partition[IntegerDigits[3#^3], 3, 1], {3, 3, 3}]&] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(PARI) select( {is_A014569(n, d=3, m=10^d, r=m\9*d)=n=d*n^d; until(r>n\=10, n%m==r && return(1))}, [0..4999]) \\ Using the (optional) 2nd arg d=2..9 allows to compute the sequences A032743-A032749. - M. F. Hasler, Jul 16 2024
(Python) is_A014569=lambda n, d=3: str(d)*d in str(d*n**d) # M. F. Hasler, Jul 16 2024
CROSSREFS
Cf. A032743-A032749 (similar for d=2, ..., 9).
Sequence in context: A131062 A079506 A028527 * A063364 A264894 A028536
KEYWORD
nonn,base
EXTENSIONS
Corrected and extended by Patrick De Geest, May 15 1998
Offset changed to 1 by M. F. Hasler, Jul 16 2024
STATUS
approved