login
A264894
a(n) = n*(7*n - 5)*(49*n^2 - 35*n - 10)/8.
1
0, 1, 261, 1956, 7291, 19500, 42846, 82621, 145146, 237771, 368875, 547866, 785181, 1092286, 1481676, 1966875, 2562436, 3283941, 4148001, 5172256, 6375375, 7777056, 9398026, 11260041, 13385886, 15799375, 18525351, 21589686, 25019281, 28842066, 33087000
OFFSET
0,3
COMMENTS
Doubly 9-gonal (or nonagonal) numbers.
LINKS
OEIS Wiki, Figurate numbers
Eric Weisstein's World of Mathematics, Nonagonal Number
FORMULA
G.f.: x*(1 + 256*x + 661*x^2 + 111*x^3)/(1 - x)^5.
a(n) = A001106(A001106(n)).
Sum_{n>0} 1/a(n) = (4*(sqrt(65)*gamma + sqrt(65)*polygamma(0, 2/7) - 5*polygamma(0, (1/14)*(9 - sqrt(65))) + 5*polygamma(0, (1/14)*(9 + sqrt(65)))))/(25*sqrt(65)) = 1.0045877861645573..., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.
MATHEMATICA
Table[n (7 n - 5) (49 n^2 - 35 n - 10)/8, {n, 0, 30}]
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 261, 1956, 7291}, 40] (* Harvey P. Dale, Apr 29 2017 *)
PROG
(PARI) vector(100, n, n--; n*(7*n-5)*(49*n^2-35*n-10)/8) \\ Altug Alkan, Nov 27 2015
(Magma) [n*(7*n-5)*(49*n^2-35*n-10)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Ilya Gutkovskiy, Nov 27 2015
STATUS
approved