Since at least the time of the ancient Greeks, man has studied sequences of numbers which correspond to the geometric arrangement of like items (e.g. dots, pebbles, atoms, ...) which begets the figurate numbers.[1] For the Greeks of Antiquity, these numbers related either to 2-dimensional figures such as polygons,[2] or to 3-dimensional figures such as pyramids.[3] Figurate numbers, which are usually associated with the 2 or 3-dimensional figures, may be generalized to higher dimensions where they are often called polytope numbers and also to lower dimensions (where they are called gnomonic numbers and centered gnomonic numbers for 1-dimensional figures).
This introductory page shows only the 2-dimensional regular convex figurate numbers (polygonal numbers and centered polygonal numbers) and their associated 3-dimensional pyramidal layerings (pyramidal numbers and centered pyramidal numbers, i.e. (centered polygons) pyramidal numbers), which are not globally centered (only the original polygons are). Although pyramids (with any polygonal base) are not regular polyhedrons (with the exception of triangular pyramids, which are tetrahedrons,[4] one of the 5 Platonic solids[5]), the Greeks had a particular fascination towards square pyramids.[6] It turns out that a square dipyramid[7] is a regular polyhedron, an octahedron,[8] one of the 5 Platonic solids!
All figurate numbers are fully classified on the page: Classifications of figurate numbers.
Two-dimensional figurate numbers
Polygonal numbers
|
|
|
[9]
|
Triangular numbers
|
Square numbers
|
Pentagonal numbers
|
Hexagonal numbers
|
The polygonal numbers
model
-sided (the number of sides of a polygon being equal to its number of vertices
) regular convex polygons which grow by the addition of layers to
of the sides.
The general formula for regular convex polygonal numbers is:[10]
-
P (2) V(n) = = [(V − 2) n − (V − 4)], |
where
is the number of vertices (thus sides) of the polygon.
Prime numbers (shown in
bold) occur only in
since
is obviously composite from the formula.
See Polygonal numbers (and Category:Polygonal numbers) for more information (e.g. more formulae, recurrence equations, generating functions, order of basis, differences, partial sums, partial sums of reciprocals, sum of reciprocals) about the regular polygonal numbers.
Polygonal numbers formulae and values
A-number
|
-gonal numbers
|
Formula
|
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
A000217
|
Trigonal numbers (Triangular numbers)
|
|
0
|
1
|
3
|
6
|
10
|
15
|
21
|
28
|
36
|
45
|
55
|
66
|
78
|
91
|
105
|
120
|
136
|
153
|
171
|
190
|
210
|
A000290
|
Tetragonal numbers (Square numbers)
|
|
0
|
1
|
4
|
9
|
16
|
25
|
36
|
49
|
64
|
81
|
100
|
121
|
144
|
169
|
196
|
225
|
256
|
289
|
324
|
361
|
400
|
A000326
|
Pentagonal numbers
|
|
0
|
1
|
5
|
12
|
22
|
35
|
51
|
70
|
92
|
117
|
145
|
176
|
210
|
247
|
287
|
330
|
376
|
425
|
477
|
532
|
590
|
A000384
|
Hexagonal numbers
|
|
0
|
1
|
6
|
15
|
28
|
45
|
66
|
91
|
120
|
153
|
190
|
231
|
276
|
325
|
378
|
435
|
496
|
561
|
630
|
703
|
780
|
A000566
|
Heptagonal numbers
|
|
0
|
1
|
7
|
18
|
34
|
55
|
81
|
112
|
148
|
189
|
235
|
286
|
342
|
403
|
469
|
540
|
616
|
697
|
783
|
874
|
970
|
A000567
|
Octagonal numbers
|
|
0
|
1
|
8
|
21
|
40
|
65
|
96
|
133
|
176
|
225
|
280
|
341
|
408
|
481
|
560
|
645
|
736
|
833
|
936
|
1045
|
1160
|
A001106
|
Nonagonal numbers
|
|
0
|
1
|
9
|
24
|
46
|
75
|
111
|
154
|
204
|
261
|
325
|
396
|
474
|
559
|
651
|
750
|
856
|
969
|
1089
|
1216
|
1350
|
A001107
|
Decagonal numbers
|
|
0
|
1
|
10
|
27
|
52
|
85
|
126
|
175
|
232
|
297
|
370
|
451
|
540
|
637
|
742
|
855
|
976
|
1105
|
1242
|
1387
|
1540
|
A051682
|
Hendecagonal numbers
|
|
0
|
1
|
11
|
30
|
58
|
95
|
141
|
196
|
260
|
333
|
415
|
506
|
606
|
715
|
833
|
960
|
1096
|
1241
|
1395
|
1558
|
1730
|
A051624
|
Dodecagonal numbers
|
|
0
|
1
|
12
|
33
|
64
|
105
|
156
|
217
|
288
|
369
|
460
|
561
|
672
|
793
|
924
|
1065
|
1216
|
1377
|
1548
|
1729
|
1920
|
A051865
|
Tridecagonal numbers
|
|
0
|
1
|
13
|
36
|
70
|
115
|
171
|
238
|
316
|
405
|
505
|
616
|
738
|
871
|
1015
|
1170
|
1336
|
1513
|
1701
|
1900
|
2110
|
A051866
|
Tetradecagonal numbers
|
|
0
|
1
|
14
|
39
|
76
|
125
|
186
|
259
|
344
|
441
|
550
|
671
|
804
|
949
|
1106
|
1275
|
1456
|
1649
|
1854
|
2071
|
2300
|
A051867
|
Pentadecagonal numbers
|
|
0
|
1
|
15
|
42
|
82
|
135
|
201
|
280
|
372
|
477
|
595
|
726
|
870
|
1027
|
1197
|
1380
|
1576
|
1785
|
2007
|
2242
|
2490
|
A051868
|
Hexadecagonal numbers
|
|
0
|
1
|
16
|
45
|
88
|
145
|
216
|
301
|
400
|
513
|
640
|
781
|
936
|
1105
|
1288
|
1485
|
1696
|
1921
|
2160
|
2413
|
2680
|
A051869
|
Heptadecagonal numbers
|
|
0
|
1
|
17
|
48
|
94
|
155
|
231
|
322
|
428
|
549
|
685
|
836
|
1002
|
1183
|
1379
|
1590
|
1816
|
2057
|
2313
|
2584
|
2870
|
A051870
|
Octadecagonal numbers
|
|
0
|
1
|
18
|
51
|
100
|
165
|
246
|
343
|
456
|
585
|
730
|
891
|
1068
|
1261
|
1470
|
1695
|
1936
|
2193
|
2466
|
2755
|
3060
|
A051871
|
Nonadecagonal numbers
|
|
0
|
1
|
19
|
54
|
106
|
175
|
261
|
364
|
484
|
621
|
775
|
946
|
1134
|
1339
|
1561
|
1800
|
2056
|
2329
|
2619
|
2926
|
3250
|
A051872
|
Icosagonal numbers
|
|
0
|
1
|
20
|
57
|
112
|
185
|
276
|
385
|
512
|
657
|
820
|
1001
|
1200
|
1417
|
1652
|
1905
|
2176
|
2465
|
2772
|
3097
|
3440
|
Centered polygonal numbers
|
|
|
[9]
|
Centered triangular numbers
|
Centered square numbers
|
Centered pentagonal numbers
|
Centered hexagonal numbers (Hex numbers)
|
The centered polygonal numbers
model
-sided regular convex polygons (the number of sides of a polygon being equal to its number of vertices
) centered on a single dot (for
), in which each successive layer surrounds the previous layer.
The general formula for centered polygonal numbers is:[11]
-
c P (2) V(n) = V P (2) 3(n) + 1 = V Tn + 1 = V ( n + 12 ) + 1 = V + 1, |
where
is the
th triangular number.
Prime numbers (shown in bold) occur often among the centered polygonal numbers due to the 1 addend in the formula. There are primes among all the centered polygonal numbers from the centered triangular numbers to the centered icosagonal numbers, with the notable exceptions of the centered octagonal numbers (which can never be prime since they are odd squares) and the centered nonagonal numbers (which can never be prime since they are a subsequence of the triangular numbers).
See Centered polygonal numbers (and Category:Centered polygonal numbers) for more information (e.g. more formulae, recurrence equations, generating functions, order of basis, differences, partial sums, partial sums of reciprocals, sum of reciprocals) about the centered polygonal numbers.
Centered polygonal numbers formulae and values
A-number
|
Centered -gonal numbers
|
Formula
|
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
# of primes for in [0 .. 19]
|
A005448
|
Centered trigonal numbers (Centered triangular numbers)
|
|
1
|
4
|
10
|
19
|
31
|
46
|
64
|
85
|
109
|
136
|
166
|
199
|
235
|
274
|
316
|
361
|
409
|
460
|
514
|
571
|
6
|
A001844
|
Centered tetragonal numbers (Centered square numbers)
|
|
1
|
5
|
13
|
25
|
41
|
61
|
85
|
113
|
145
|
181
|
221
|
265
|
313
|
365
|
421
|
481
|
545
|
613
|
685
|
761
|
10
|
A005891
|
Centered pentagonal numbers
|
|
1
|
6
|
16
|
31
|
51
|
76
|
106
|
141
|
181
|
226
|
276
|
331
|
391
|
456
|
526
|
601
|
681
|
766
|
856
|
951
|
4
|
A003215
|
Centered hexagonal numbers (Hex numbers)
|
|
1
|
7
|
19
|
37
|
61
|
91
|
127
|
169
|
217
|
271
|
331
|
397
|
469
|
547
|
631
|
721
|
817
|
919
|
1027
|
1141
|
11
|
A069099
|
Centered heptagonal numbers
|
|
1
|
8
|
22
|
43
|
71
|
106
|
148
|
197
|
253
|
316
|
386
|
463
|
547
|
638
|
736
|
841
|
953
|
1072
|
1198
|
1331
|
6
|
A016754
|
Centered octagonal numbers
|
|
1
|
9
|
25
|
49
|
81
|
121
|
169
|
225
|
289
|
361
|
441
|
529
|
625
|
729
|
841
|
961
|
1089
|
1225
|
1369
|
1521
|
0
|
A060544
|
Centered nonagonal numbers
|
|
1
|
10
|
28
|
55
|
91
|
136
|
190
|
253
|
325
|
406
|
496
|
595
|
703
|
820
|
946
|
1081
|
1225
|
1378
|
1540
|
1711
|
0
|
A062786
|
Centered decagonal numbers
|
|
1
|
11
|
31
|
61
|
101
|
151
|
211
|
281
|
361
|
451
|
551
|
661
|
781
|
911
|
1051
|
1201
|
1361
|
1531
|
1711
|
1901
|
14
|
A069125
|
Centered hendecagonal numbers
|
|
1
|
12
|
34
|
67
|
111
|
166
|
232
|
309
|
397
|
496
|
606
|
727
|
859
|
1002
|
1156
|
1321
|
1497
|
1684
|
1882
|
2091
|
5
|
A003154
|
Centered dodecagonal numbers
|
|
1
|
13
|
37
|
73
|
121
|
181
|
253
|
337
|
433
|
541
|
661
|
793
|
937
|
1093
|
1261
|
1441
|
1633
|
1837
|
2053
|
2281
|
12
|
A069126
|
Centered tridecagonal numbers
|
|
1
|
14
|
40
|
79
|
131
|
196
|
274
|
365
|
469
|
586
|
716
|
859
|
1015
|
1184
|
1366
|
1561
|
1769
|
1990
|
2224
|
2471
|
3
|
A069127
|
Centered tetradecagonal numbers
|
|
1
|
15
|
43
|
85
|
141
|
211
|
295
|
393
|
505
|
631
|
771
|
925
|
1093
|
1275
|
1471
|
1681
|
1905
|
2143
|
2395
|
2661
|
6
|
A069128
|
Centered pentadecagonal numbers
|
|
1
|
16
|
46
|
91
|
151
|
226
|
316
|
421
|
541
|
676
|
826
|
991
|
1171
|
1366
|
1576
|
1801
|
2041
|
2296
|
2566
|
2851
|
7
|
A069129
|
Centered hexadecagonal numbers
|
|
1
|
17
|
49
|
97
|
161
|
241
|
337
|
449
|
577
|
721
|
881
|
1057
|
1249
|
1457
|
1681
|
1921
|
2177
|
2449
|
2737
|
3041
|
9
|
A069130
|
Centered heptadecagonal numbers
|
|
1
|
18
|
52
|
103
|
171
|
256
|
358
|
477
|
613
|
766
|
936
|
1123
|
1327
|
1548
|
1786
|
2041
|
2313
|
2602
|
2908
|
3231
|
4
|
A069131
|
Centered octadecagonal numbers
|
|
1
|
19
|
55
|
109
|
181
|
271
|
379
|
505
|
649
|
811
|
991
|
1189
|
1405
|
1639
|
1891
|
2161
|
2449
|
2755
|
3079
|
3421
|
9
|
A069132
|
Centered nonadecagonal numbers
|
|
1
|
20
|
58
|
115
|
191
|
286
|
400
|
533
|
685
|
856
|
1046
|
1255
|
1483
|
1730
|
1996
|
2281
|
2585
|
2908
|
3250
|
3611
|
3
|
A069133
|
Centered icosagonal numbers
|
|
1
|
21
|
61
|
121
|
201
|
301
|
421
|
561
|
721
|
901
|
1101
|
1321
|
1561
|
1821
|
2101
|
2401
|
2721
|
3061
|
3421
|
3801
|
4
|
Three-dimensional figurate numbers
Pyramidal numbers
The pyramidal numbers
model
-gonal (the number of sides of the polygonal base of a pyramid being equal to its number of vertices
minus one for the apex vertex) pyramids in which each horizontal layer corresponds to a regular convex
polygonal number, thus:
-
Y (3) V(n) ≡ P (2) [V −1] (i). |
The general formula for the pyramidal numbers is:[12]
-
Y (3) V(n) = ([V − 1] − 2) n 3 + 3 n 2 − ([V − 1] − 5) n | 6 | = {([V − 1] − 2) n 2 + 3 n − ([V − 1] − 5)}. |
Prime numbers (shown in
bold) may appear only for
since
is obviously composite from the formula.
See Pyramidal numbers (and Category:Pyramidal numbers) for more information (e.g. more formulae, recurrence equations, generating functions, order of basis, differences, partial sums, partial sums of reciprocals, sum of reciprocals) about the pyramidal numbers.
Pyramidal numbers formulae and values
A-number
|
-gonal pyramidal numbers
|
Formula
|
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
A000292
|
Trigonal pyramidal numbers (Tetrahedral numbers)
|
|
0
|
1
|
4
|
10
|
20
|
35
|
56
|
84
|
120
|
165
|
220
|
286
|
364
|
455
|
560
|
680
|
816
|
969
|
1140
|
1330
|
1540
|
A000330
|
Tetragonal pyramidal numbers (Square pyramidal numbers)
|
|
0
|
1
|
5
|
14
|
30
|
55
|
91
|
140
|
204
|
285
|
385
|
506
|
650
|
819
|
1015
|
1240
|
1496
|
1785
|
2109
|
2470
|
2870
|
A002411
|
Pentagonal pyramidal numbers
|
|
0
|
1
|
6
|
18
|
40
|
75
|
126
|
196
|
288
|
405
|
550
|
726
|
936
|
1183
|
1470
|
1800
|
2176
|
2601
|
3078
|
3610
|
4200
|
A002412
|
Hexagonal pyramidal numbers
|
|
0
|
1
|
7
|
22
|
50
|
95
|
161
|
252
|
372
|
525
|
715
|
946
|
1222
|
1547
|
1925
|
2360
|
2856
|
3417
|
4047
|
4750
|
5530
|
A002413
|
Heptagonal pyramidal numbers
|
|
0
|
1
|
8
|
26
|
60
|
115
|
196
|
308
|
456
|
645
|
880
|
1166
|
1508
|
1911
|
2380
|
2920
|
3536
|
4233
|
5016
|
5890
|
6860
|
A002414
|
Octagonal pyramidal numbers
|
|
0
|
1
|
9
|
30
|
70
|
135
|
231
|
364
|
540
|
765
|
1045
|
1386
|
1794
|
2275
|
2835
|
3480
|
4216
|
5049
|
5985
|
7030
|
8190
|
A007584
|
Nonagonal pyramidal numbers
|
|
0
|
1
|
10
|
34
|
80
|
155
|
266
|
420
|
624
|
885
|
1210
|
1606
|
2080
|
2639
|
3290
|
4040
|
4896
|
5865
|
6954
|
8170
|
9520
|
A007585
|
Decagonal pyramidal numbers
|
|
0
|
1
|
11
|
38
|
90
|
175
|
301
|
476
|
708
|
1005
|
1375
|
1826
|
2366
|
3003
|
3745
|
4600
|
5576
|
6681
|
7923
|
9310
|
10850
|
A007586
|
Hendecagonal pyramidal numbers
|
|
0
|
1
|
12
|
42
|
100
|
195
|
336
|
532
|
792
|
1125
|
1540
|
2046
|
2652
|
3367
|
4200
|
5160
|
6256
|
7497
|
8892
|
10450
|
12180
|
A007587
|
Dodecagonal pyramidal numbers
|
|
0
|
1
|
13
|
46
|
110
|
215
|
371
|
588
|
876
|
1245
|
1705
|
2266
|
2938
|
3731
|
4655
|
5720
|
6936
|
8313
|
9861
|
11590
|
13510
|
A050441
|
Tridecagonal pyramidal numbers
|
|
0
|
1
|
14
|
50
|
120
|
235
|
406
|
644
|
960
|
1365
|
1870
|
2486
|
3224
|
4095
|
5110
|
6280
|
7616
|
9129
|
10830
|
12730
|
14840
|
A172073
|
Tetradecagonal pyramidal numbers
|
|
0
|
1
|
15
|
54
|
130
|
255
|
441
|
700
|
1044
|
1485
|
2035
|
2706
|
3510
|
4459
|
5565
|
6840
|
8296
|
9945
|
11799
|
13870
|
16170
|
A??????
|
Pentadecagonal pyramidal numbers
|
|
0
|
1
|
16
|
58
|
140
|
275
|
476
|
756
|
1128
|
1605
|
2200
|
2926
|
3796
|
4823
|
6020
|
7400
|
8976
|
10761
|
12768
|
15010
|
17500
|
A172076
|
Hexadecagonal pyramidal numbers
|
|
0
|
1
|
17
|
62
|
150
|
295
|
511
|
812
|
1212
|
1725
|
2365
|
3146
|
4082
|
5187
|
6475
|
7960
|
9656
|
11577
|
13737
|
16150
|
18830
|
A??????
|
Heptadecagonal pyramidal numbers
|
|
0
|
1
|
18
|
66
|
160
|
315
|
546
|
868
|
1296
|
1845
|
2530
|
3366
|
4368
|
5551
|
6930
|
8520
|
10336
|
12393
|
14706
|
17290
|
20160
|
A172078
|
Octadecagonal pyramidal numbers
|
|
0
|
1
|
19
|
70
|
170
|
335
|
581
|
924
|
1380
|
1965
|
2695
|
3586
|
4654
|
5915
|
7385
|
9080
|
11016
|
13209
|
15675
|
18430
|
21490
|
A??????
|
Nonadecagonal pyramidal numbers
|
|
0
|
1
|
20
|
74
|
180
|
355
|
616
|
980
|
1464
|
2085
|
2860
|
3806
|
4940
|
6279
|
7840
|
9640
|
11696
|
14025
|
16644
|
19570
|
22820
|
A172082
|
Icosagonal pyramidal numbers
|
|
0
|
1
|
21
|
78
|
190
|
375
|
651
|
1036
|
1548
|
2205
|
3025
|
4026
|
5226
|
6643
|
8295
|
10200
|
12376
|
14841
|
17613
|
20710
|
24150
|
Centered pyramidal numbers
The
centered pyramidal numbers, i.e.
(centered polygons) pyramidal numbers are a family of sequences of
3-dimensional
nonregular polytope numbers (among the
3-dimensional
figurate numbers) formed by adding the first
positive
centered polygonal numbers with constant number of sides
, where
is the number of vertices (including the apex vertex) of the polygonal base pyramid. The term
centered pyramid numbers, i.e.
(centered squares) pyramidal numbers, is often used to refer to the
centered square pyramidal numbers, i.e.
(centered squares) pyramidal numbers, having a polygonal base with four sides. The
centered pyramidal numbers, i.e.
(centered polygons) pyramidal numbers, are a generalization of the
centered pyramid numbers, i.e.
(centered squares) pyramidal numbers, where the base is a regular convex polygon with any number of sides
.
Centered pyramidal numbers, i.e.
(centered polygons) pyramidal numbers, may also be generalized to higher dimensions as
centered hyperpyramidal numbers, i.e.
(centered polygons) hyperpyramidal numbers.
While the
(centered polygons) pyramidal numbers are pyramidal stacks of centered polygons, the generated figures are
not globally centered. Thus the
(centered polygons) pyramidal numbers do not belong to the category of globally
centered figurate numbers (which start with the globally
central dot, giving value
1, for
), they belong to the category of globally
noncentered figurate numbers (which equals
0 for
) and start with the
initial dot, giving value
1, for
). It would be less confusing if the
centered pyramidal numbers were called
(centered polygons) pyramidal numbers. Note that although the
triangular pyramidal numbers are
tetrahedral numbers, the
(centered triangles) pyramidal numbers are
NOT the (globally centered)
centered tetrahedral numbers.
The
centered pyramidal numbers model
-gonal (the number of sides of the polygonal base of a pyramid being equal to the number of vertices
minus one for the apex vertex) pyramids in which each horizontal layer corresponds to a
centered polygonal number, thus
-
‘c’Y (3) V(n) ≡ c P (2) [V −1] (i). |
[13]
The general formula for centered pyramidal numbers is
-
‘c’Y (3) V(n) = [V − 1] n 3 − ([V − 1] − 6) n | 6 | = [V − 1] (n − 1) n (n + 1) | 6 | + n = [V − 1] ( n + 13 ) + n. |
Observe that the
th centered hexagonal pyramidal number is equal to the
th cube. Also the
th centered square pyramidal number is equal to the
th octahedral number, which is interesting since the
th octahedral number is the
th square dipyramidal number which is the sum of the
th square pyramidal number and the
th square pyramidal number.
While the
centered pyramidal numbers are pyramidal stacks of centered polygons, the generated figures are
not globally centered. Thus the
centered pyramidal numbers do not belong to the category of globally
centered figurate numbers (which start with the globally
central dot, giving value
1, for
), they belong to the category of globally
noncentered figurate numbers (which equals
0 for
and start with the
initial dot, giving value
1, for
). It would be less confusing if the
centered pyramidal numbers were called
centered polygon pyramidal numbers. Note that although the triangular pyramidal numbers are
tetrahedral numbers, the (centered polygons) centered triangular pyramidal numbers are
NOT the (globally centered)
centered tetrahedral numbers.
See Centered pyramidal numbers (and Category:Centered pyramidal numbers) for more information (e.g. more formulae, recurrence equations, generating functions, order of basis, differences, partial sums, partial sums of reciprocals, sum of reciprocals) about the centered pyramidal numbers.
Centered pyramidal numbers formulae and values
A-number
|
Centered -gonal pyramidal numbers
|
Formula
|
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
13
|
14
|
15
|
16
|
17
|
18
|
19
|
20
|
A006003
|
Centered trigonal pyramidal numbers (Centered triangular pyramidal numbers)
|
|
0
|
1
|
5
|
15
|
34
|
65
|
111
|
175
|
260
|
369
|
505
|
671
|
870
|
1105
|
1379
|
1695
|
2056
|
2465
|
2925
|
3439
|
4010
|
A005900
|
Centered tetragonal pyramidal numbers (Centered square pyramidal numbers)
|
Octahedral numbers
|
0
|
1
|
6
|
19
|
44
|
85
|
146
|
231
|
344
|
489
|
670
|
891
|
1156
|
1469
|
1834
|
2255
|
2736
|
3281
|
3894
|
4579
|
5340
|
A004068
|
Centered pentagonal pyramidal numbers
|
|
0
|
1
|
7
|
23
|
54
|
105
|
181
|
287
|
428
|
609
|
835
|
1111
|
1442
|
1833
|
2289
|
2815
|
3416
|
4097
|
4863
|
5719
|
6670
|
A000578
|
Centered hexagonal pyramidal numbers (Hex pyramidal numbers)
|
Cubes
|
0
|
1
|
8
|
27
|
64
|
125
|
216
|
343
|
512
|
729
|
1000
|
1331
|
1728
|
2197
|
2744
|
3375
|
4096
|
4913
|
5832
|
6859
|
8000
|
A004126
|
Centered heptagonal pyramidal numbers
|
|
0
|
1
|
9
|
31
|
74
|
145
|
251
|
399
|
596
|
849
|
1165
|
1551
|
2014
|
2561
|
3199
|
3935
|
4776
|
5729
|
6801
|
7999
|
9330
|
A000447
|
Centered octagonal pyramidal numbers
|
|
0
|
1
|
10
|
35
|
84
|
165
|
286
|
455
|
680
|
969
|
1330
|
1771
|
2300
|
2925
|
3654
|
4495
|
5456
|
6545
|
7770
|
9139
|
10660
|
A004188
|
Centered nonagonal pyramidal numbers
|
|
0
|
1
|
11
|
39
|
94
|
185
|
321
|
511
|
764
|
1089
|
1495
|
1991
|
2586
|
3289
|
4109
|
5055
|
6136
|
7361
|
8739
|
10279
|
11990
|
A004466
|
Centered decagonal pyramidal numbers
|
|
0
|
1
|
12
|
43
|
104
|
205
|
356
|
567
|
848
|
1209
|
1660
|
2211
|
2872
|
3653
|
4564
|
5615
|
6816
|
8177
|
9708
|
11419
|
13320
|
A004467
|
Centered hendecagonal pyramidal numbers
|
|
0
|
1
|
13
|
47
|
114
|
225
|
391
|
623
|
932
|
1329
|
1825
|
2431
|
3158
|
4017
|
5019
|
6175
|
7496
|
8993
|
10677
|
12559
|
14650
|
A007588
|
Centered dodecagonal pyramidal numbers
|
Stellated octahedron number [14] (Stella octangula number) [15]
|
0
|
1
|
14
|
51
|
124
|
245
|
426
|
679
|
1016
|
1449
|
1990
|
2651
|
3444
|
4381
|
5474
|
6735
|
8176
|
9809
|
11646
|
13699
|
15980
|
A062025
|
Centered tridecagonal pyramidal numbers
|
|
0
|
1
|
15
|
55
|
134
|
265
|
461
|
735
|
1100
|
1569
|
2155
|
2871
|
3730
|
4745
|
5929
|
7295
|
8856
|
10625
|
12615
|
14839
|
17310
|
A063521
|
Centered tetradecagonal pyramidal numbers
|
|
0
|
1
|
16
|
59
|
144
|
285
|
496
|
791
|
1184
|
1689
|
2320
|
3091
|
4016
|
5109
|
6384
|
7855
|
9536
|
11441
|
13584
|
15979
|
18640
|
A063522
|
Centered pentadecagonal pyramidal numbers
|
|
0
|
1
|
17
|
63
|
154
|
305
|
531
|
847
|
1268
|
1809
|
2485
|
3311
|
4302
|
5473
|
6839
|
8415
|
10216
|
12257
|
14553
|
17119
|
19970
|
A063523
|
Centered hexadecagonal pyramidal numbers
|
|
0
|
1
|
18
|
67
|
164
|
325
|
566
|
903
|
1352
|
1929
|
2650
|
3531
|
4588
|
5837
|
7294
|
8975
|
10896
|
13073
|
15522
|
18259
|
21300
|
A??????
|
Centered heptadecagonal pyramidal numbers
|
|
0
|
1
|
19
|
71
|
174
|
345
|
601
|
959
|
1436
|
2049
|
2815
|
3751
|
4874
|
6201
|
7749
|
9535
|
11576
|
13889
|
16491
|
19399
|
22630
|
A??????
|
Centered octadecagonal pyramidal numbers
|
|
0
|
1
|
20
|
75
|
184
|
365
|
636
|
1015
|
1520
|
2169
|
2980
|
3971
|
5160
|
6565
|
8204
|
10095
|
12256
|
14705
|
17460
|
20539
|
23960
|
A??????
|
Centered nonadecagonal pyramidal numbers
|
|
0
|
1
|
21
|
79
|
194
|
385
|
671
|
1071
|
1604
|
2289
|
3145
|
4191
|
5446
|
6929
|
8659
|
10655
|
12936
|
15521
|
18429
|
21679
|
25290
|
A??????
|
Centered icosagonal pyramidal numbers
|
|
0
|
1
|
22
|
83
|
204
|
405
|
706
|
1127
|
1688
|
2409
|
3310
|
4411
|
5732
|
7293
|
9114
|
11215
|
13616
|
16337
|
19398
|
22819
|
26620
|
See also
Notes
- ↑ Weisstein, Eric W., Figurate Number, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Polygon, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Pyramid, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Tetrahedron, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Platonic Solid, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Square Pyramid, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Dipyramid, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Octahedron, from MathWorld—A Wolfram Web Resource.
- ↑ 9.0 9.1 Author of the plots: Stefan Friedrich Birkner, License: Creative Commons Attribution-ShareAlike 3.0 Unported.
- ↑ Where is the -dimensional regular convex polytope number, where is the number of 0-dimensional elements (i.e. vertices ) of the regular polytope.
- ↑ Where is the -dimensional centered regular convex polytope number, where is the number of 0-dimensional elements (i.e. vertices ) of the regular polytope.
- ↑ Where
Y (d) N0(n) = Y (d) [(k + 2) + (d − 2)](n) = Y (d) k +d (n), k ≥ 1, n ≥ 0, |
is the -dimensional, , -gonal base (hyper)pyramidal number where, for , N0 = (k + 2) + (d − 2) = k + d |
is the number of vertices (including the apex vertices) of the polygonal base (hyper)pyramid.
- ↑ Where
‘c’Y (d) [(k + 2) + (d − 2)] (n) = ‘c’Y (d) k +d (n), k ≥ 1, n ≥ 0, |
is the -dimensional, , -gonal base (centered polygons) (hyper)pyramidal number where, for d ≥ 2, N0 = [(k + 2) + (d − 2)] = k + d |
is the number of vertices (including the apex vertices) of the (centered polygonal base) (hyper)pyramid (the quoted emphasizes that only the polygons are centered, not the whole figure).
- ↑ Weisstein, Eric W., Stellated Octahedron, from MathWorld—A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Stella Octangula Number, from MathWorld—A Wolfram Web Resource.
External links
- Table of Figurate Numbers, Sorted, Through 10,000, compiled by Magic Dragon Multimedia, 2004.
- Table of Polytope Numbers, Sorted, Through 1,000,000, compiled by Magic Dragon Multimedia, 2004.