login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063522 a(n) = n*(5*n^2 - 3)/2. 18
0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..1000

T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).

Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).

FORMULA

G.f.: x*(1 + 13*x + x^2)/(1-x)^4. - Colin Barker, Jan 10 2012

E.g.f.: (x/2)*(2 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

MATHEMATICA

lst={}; Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)

CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)

PROG

(PARI) { for (n=0, 1000, write("b063522.txt", n, " ", n*(5*n^2 - 3)/2) ) } \\ Harry J. Smith, Aug 25 2009

(MAGMA) [n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018

CROSSREFS

(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Bisections: A160674, A160699.

Sequence in context: A195025 A010005 A172076 * A244973 A145850 A125992

Adjacent sequences:  A063519 A063520 A063521 * A063523 A063524 A063525

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Aug 02 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 22 21:50 EDT 2018. Contains 304442 sequences. (Running on oeis4.)