login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016754 Odd squares: (2n+1)^2. Also centered octagonal numbers. 99
1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl (hansi(AT)nordtroms.net), Jan 26 2008

Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003

If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007

Binomial transform of [1, 8, 8, 0, 0, 0,...]; Narayana transform (A001263) of [1, 8, 0, 0, 0,...]. - Gary W. Adamson, Dec 29 2007

All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008

Sequence arises from reading the line from 1, in the direction 1, 25,... and the line from 9, in the direction 9, 49,..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008

First quadrisection of A061038: A061038(4n). - Paul Curtz, Oct 26 2008

Sum_{n>=0} 1/a(n) = Pi^2/8. - Jaume Oliver Lafont, Mar 07 2009

Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0,...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009

First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009

Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010

Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011

Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_(k=1)^infinity (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011

Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011

All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012

Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012

Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013

Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013

For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014

LINKS

T. D. Noe, Table of n, a(n) for n=0..1000

B. C. Berndt & K. Ono, Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary

Milan Janjic, Two Enumerative Functions

Eric Weisstein's World of Mathematics, Moore Neighborhood

Robert G. Wilson v, Cover of the March 1964 issue of Scientific American

Index entries for sequences related to centered polygonal numbers

Index to sequences with linear recurrences with constant coefficients, signature (3,-3,1)

Index entries for sequences related to linear recurrences with constant coefficients

FORMULA

a(n) = 1 + sum(8*i, i=1..n) = 1+8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010

O.g.f.: (1+6*x+x^2)/(1-x)^3 . - R. J. Mathar, Jan 11 2008

a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008

a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009

a(n) = 8*n+a(n-1) with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010

a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009

a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011

a(n) = (A005408(n))^2. - Moshe Levin, Nov 29 2011

From George F. Johnson, Sep 05 2012: (Start)

a(n+1) = a(n) + 4 + 4*sqrt(a(n)); a(n-1) = a(n) + 4 - 4*sqrt(a(n)).

a(n+1) = 2*a(n) - a(n-1) + 8; a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).

(a(n+1) - a(n-1))/8 = sqrt(a(n)); a(n+1)*a(n-1) = (a(n)-4)^2.

a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).

Limit as n -> infinity of a(n)/a(n-1) = 1.

(End)

a(n) = binomial(2n,2) + binomial(2n-1,2). - John Molokach, Jul 12 2013

a(n+1) = n^2 + (n+1)^2 + (n+2)^2 + (n+3)^2. - Jean-Bernard Fran├žois, Nov 25 2013

MATHEMATICA

Table[4n*(n + 1) + 1, {n, 0, 500}] (* Artur Jasinski, Mar 27 2008 *)

PROG

(PARI) (n+n+1)^2 \\ Charles R Greathouse IV, Jun 16 2011

(Haskell)

a016754 n = a016754_list !! n

a016754_list = scanl (+) 1 $ tail a008590_list

-- Reinhard Zumkeller, Apr 02 2012

(Maxima) A016754(n):=(n+n+1)^2$

makelist(A016754(n), n, 0, 20); /* Martin Ettl, Nov 12 2012 */

CROSSREFS

Cf. A005408, A033996, A001263, A138393, A000290, A001539, A016742, A016802, A016814, A016826, A016838.

Cf. A167661, A167700.

Cf. A000447 (partial sums).

Sequence in context: A075026 A113659 A113745 * A110487 A030156 A192775

Adjacent sequences:  A016751 A016752 A016753 * A016755 A016756 A016757

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Additional description from Terry Trotter, Apr 06 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 18 21:45 EDT 2014. Contains 246937 sequences.