login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A051868 16-gonal (or hexadecagonal) numbers: a(n) = n*(7*n-6). 9
0, 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, 1288, 1485, 1696, 1921, 2160, 2413, 2680, 2961, 3256, 3565, 3888, 4225, 4576, 4941, 5320, 5713, 6120, 6541, 6976, 7425, 7888, 8365, 8856, 9361, 9880, 10413, 10960, 11521 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Sequence found by reading the line from 0, in the direction 0, 16, ... and the parallel line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 18 2012

This is also a star octagonal number: a(n) = A000567(n) + 8*A000217(n-1). - Luciano Ancora, Mar 29 2015

Let T(n) = A000217(n), the n-th triangular number. Then a(n) = T(n-1) + T(4n-3) - T(2n-4) + T(n-3).  In general, let P(k,n) be the n-th k-gonal number. Then for k>1, P(T(k)+1,n) = T(n-1) + T((k-1)n-(k-2)) - T((k-3)n-2(k-3)) + T((k-4)n-3(k-4)) - ... + (-1)^(k+1)*T(n-(k-2)). - Charlie Marion, Dec 23 2019

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

Index to sequences related to polygonal numbers

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 14*n + a(n-1) - 13, with n>0, a(0)=0. - Vincenzo Librandi, Aug 06 2010

G.f.: x*(1+13*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011

a(0)=0, a(1)=1, a(2)=16; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 07 2011

a(14*a(n) + 92*n + 1) = a(14*a(n) + 92*n) + a(14*n+1). - Vladimir Shevelev, Jan 24 2014

E.g.f.: exp(x)*x*(1 + 7*x). - Stefano Spezia, Dec 27 2019

a(n) = (4*n-3)^2 - (3*n-3)^2. In general, if we let P(k,n) be the n-th k-gonal number, then P(4k,n) = (k*n-k+1)^2 - ((k-1)*n-k+1)^2. In addition, {P(4k,n)} are the only polygonal number sequences each of whose terms can be written as the difference of two squares. - Charlie Marion, Feb 16 2020

MAPLE

a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+14 od: seq(a[n], n=0..41); # Zerinvary Lajos, Feb 18 2008

MATHEMATICA

s=0; lst={s}; Do[s+=n++ +1; AppendTo[lst, s], {n, 0, 6!, 14}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)

Table[n(7n-6), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 1, 16}, 51] (*  Harvey P. Dale, May 07 2011 *)

PROG

(PARI) a(n)=n*(7*n-6) \\ Charles R Greathouse IV, Jan 24 2014

CROSSREFS

Cf. A000290, A000566, A051682, A051874, A255187, A282852.

Sequence in context: A192143 A221593 A300962 * A209993 A322343 A318093

Adjacent sequences:  A051865 A051866 A051867 * A051869 A051870 A051871

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 23:47 EDT 2020. Contains 337948 sequences. (Running on oeis4.)