

A051868


16gonal (or hexadecagonal) numbers: n*(7*n6).


6



0, 1, 16, 45, 88, 145, 216, 301, 400, 513, 640, 781, 936, 1105, 1288, 1485, 1696, 1921, 2160, 2413, 2680, 2961, 3256, 3565, 3888, 4225, 4576, 4941, 5320, 5713, 6120, 6541, 6976, 7425, 7888, 8365, 8856, 9361, 9880, 10413, 10960, 11521
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Sequence found by reading the line from 0, in the direction 0, 16,... and the parallel line from 1, in the direction 1, 45,..., in the square spiral whose vertices are the generalized 16gonal numbers.  Omar E. Pol, Jul 18 2012


REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.


LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000
Index to sequences with linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = 14*n+a(n1)13, with n>0, a(0)=0. [Vincenzo Librandi, Aug 06 2010]
G.f.: x*(1+13*x)/(1x)^3.  Bruno Berselli, Feb 04 2011
a(0)=0, a(1)=1, a(2)=16; for n>2, a(n) = 3*a(n1)3*a(n2)+a(n3). [Harvey P. Dale, May 07 2011]
a(14*a(n)+92*n+1) = a(14*a(n)+92*n) + a(14*n+1).  Vladimir Shevelev, Jan 24 2014


MAPLE

a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n1]a[n2]+14 od: seq(a[n], n=0..41);  Zerinvary Lajos, Feb 18 2008


MATHEMATICA

s=0; lst={s}; Do[s+=n++ +1; AppendTo[lst, s], {n, 0, 6!, 14}]; lst [From Vladimir Joseph Stephan Orlovsky, Nov 16 2008]
Table[n(7n6), {n, 0, 50}] (* or *) LinearRecurrence[{3, 3, 1}, {0, 1, 16}, 51] (* Harvey P. Dale, May 07 2011 *)


PROG

(PARI) a(n)=n*(7*n6) \\ Charles R Greathouse IV, Jan 24 2014


CROSSREFS

Cf. ngonal numbers: A000217, A000290, A000326, A000384, A000566, A000567, A001106, A001107, A051682, A051624, A051865A051867, this sequence, A051869A051876.
Sequence in context: A204032 A192143 A221593 * A209993 A223029 A244343
Adjacent sequences: A051865 A051866 A051867 * A051869 A051870 A051871


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Dec 15 1999


STATUS

approved



