The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051624 12-gonal (or dodecagonal) numbers: a(n) = n*(5*n-4). 39
 0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Zero followed by partial sums of A017281. - Klaus Brockhaus, Nov 20 2008 Sequence found by reading the line from 0, in the direction 0, 12, ... and the parallel line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 18 2012 This is also a star hexagonal number: a(n) = A000384(n) + 6*A000217(n-1). - Luciano Ancora, Mar 30 2015 Starting with offset 1, this is the binomial transform of (1, 11, 10, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015 a(n+1) is the sum of the odd numbers from 4n+1 to 6n+1. - Wesley Ivan Hurt, Dec 14 2015 For n >= 2, a(n) is the number of intersection points of all unit circles centered on the inner lattice points of an (n+1) X (n+1) square grid. - Wesley Ivan Hurt, Dec 08 2020 REFERENCES Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6. Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36. Wikipedia, Dodecagonal number Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(1+9*x)/(1-x)^3. a(n) = Sum_{k=0..n-1} 10*k+1. - Klaus Brockhaus, Nov 20 2008 a(n) = 10*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010 a(n) = A131242(10n). - Philippe Deléham, Mar 27 2013 a(10*a(n) + 46*n + 1) = a(10*a(n) + 46*n) + a(10*n+1). - Vladimir Shevelev, Jan 24 2014 E.g.f.: x*(5*x + 1) * exp(x). - G. C. Greubel, Jul 31 2015 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015 Sum_{n>=1} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/8 + 5*log(5)/16 + sqrt(5)*log((1 + sqrt(5))/2)/8 = 1.177956057922663858735173968... . - Vaclav Kotesovec, Apr 27 2016 a(n) + 4*(n-1)^2 = (3*n-2)^2. Let P(k,n) be the n-th k-gonal number. Then, in general, P(4k,n) + (k-1)^2*(n-1)^2 = (k*n-k+1)^2. - Charlie Marion, Feb 04 2020 Product_{n>=2} (1 - 1/a(n)) = 5/6. - Amiram Eldar, Jan 21 2021 a(n) = (3*n-2)^2 - (2*n-2)^2. In general, if we let P(k,n) = the n-th k-gonal number, then P(4k,n) = (k*n-(k-1))^2 - ((k-1)*n-(k-1))^2. - Charlie Marion, Nov 11 2021 MATHEMATICA RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3]}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *) Table[n*(5*n - 4), {n, 0, 100}] (* Robert Price, Oct 11 2018 *) PROG (MAGMA) [ n eq 1 select 0 else Self(n-1)+10*(n-2)+1: n in [1..43] ]; // Klaus Brockhaus, Nov 20 2008 (PARI) a(n)=(5*n-4)*n \\ Charles R Greathouse IV, Jun 16 2011 CROSSREFS First differences of A007587. Cf. A093645 ((10, 1) Pascal, column m=2). Partial sums of A017281. Sequence in context: A328326 A131543 A063296 * A039338 A118337 A032604 Adjacent sequences:  A051621 A051622 A051623 * A051625 A051626 A051627 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 11:31 EDT 2022. Contains 355075 sequences. (Running on oeis4.)