|
|
A051624
|
|
12-gonal (or dodecagonal) numbers: a(n) = n*(5*n-4).
|
|
42
|
|
|
0, 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924, 1065, 1216, 1377, 1548, 1729, 1920, 2121, 2332, 2553, 2784, 3025, 3276, 3537, 3808, 4089, 4380, 4681, 4992, 5313, 5644, 5985, 6336, 6697, 7068, 7449, 7840, 8241, 8652
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Zero followed by partial sums of A017281. - Klaus Brockhaus, Nov 20 2008
Sequence found by reading the line from 0, in the direction 0, 12, ... and the parallel line from 1, in the direction 1, 33, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 18 2012
This is also a star hexagonal number: a(n) = A000384(n) + 6*A000217(n-1). - Luciano Ancora, Mar 30 2015
Starting with offset 1, this is the binomial transform of (1, 11, 10, 0, 0, 0, ...). - Gary W. Adamson, Aug 01 2015
a(n+1) is the sum of the odd numbers from 4n+1 to 6n+1. - Wesley Ivan Hurt, Dec 14 2015
For n >= 2, a(n) is the number of intersection points of all unit circles centered on the inner lattice points of an (n+1) X (n+1) square grid. - Wesley Ivan Hurt, Dec 08 2020
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..1000
L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Wikipedia, Dodecagonal number
Index to sequences related to polygonal numbers
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
G.f.: x*(1+9*x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} 10*k+1. - Klaus Brockhaus, Nov 20 2008
a(n) = 10*n + a(n-1) - 9 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A131242(10n). - Philippe Deléham, Mar 27 2013
a(10*a(n) + 46*n + 1) = a(10*a(n) + 46*n) + a(10*n+1). - Vladimir Shevelev, Jan 24 2014
E.g.f.: x*(5*x + 1) * exp(x). - G. C. Greubel, Jul 31 2015
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
Sum_{n>=1} 1/a(n) = sqrt(1 + 2/sqrt(5))*Pi/8 + 5*log(5)/16 + sqrt(5)*log((1 + sqrt(5))/2)/8 = 1.177956057922663858735173968... . - Vaclav Kotesovec, Apr 27 2016
a(n) + 4*(n-1)^2 = (3*n-2)^2. Let P(k,n) be the n-th k-gonal number. Then, in general, P(4k,n) + (k-1)^2*(n-1)^2 = (k*n-k+1)^2. - Charlie Marion, Feb 04 2020
Product_{n>=2} (1 - 1/a(n)) = 5/6. - Amiram Eldar, Jan 21 2021
|
|
MATHEMATICA
|
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3]}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
Table[n*(5*n - 4), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
|
|
PROG
|
(MAGMA) [ n eq 1 select 0 else Self(n-1)+10*(n-2)+1: n in [1..43] ]; // Klaus Brockhaus, Nov 20 2008
(PARI) a(n)=(5*n-4)*n \\ Charles R Greathouse IV, Jun 16 2011
|
|
CROSSREFS
|
First differences of A007587.
Cf. A093645 ((10, 1) Pascal, column m=2). Partial sums of A017281.
Sequence in context: A328326 A131543 A063296 * A039338 A118337 A032604
Adjacent sequences: A051621 A051622 A051623 * A051625 A051626 A051627
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Barry E. Williams
|
|
STATUS
|
approved
|
|
|
|