login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264896
Number of permutations of [n] with exactly one occurrence of the consecutive pattern 45321.
2
1, 12, 126, 1344, 15110, 180736, 2308548, 31481472, 457520055, 7068885600, 115808906178, 2006533573632, 36674815572540, 705453732298240, 14248697953325160, 301564509817810944, 6674811622886359005, 154228999030804811520, 3713903962096887036390
OFFSET
5,2
COMMENTS
Consecutive patterns 12354, 21345, 54312 give the same sequence.
LINKS
EXAMPLE
a(5) = 1: 45321.
a(6) = 12: 156432, 256431, 356421, 453216, 456321, 463215, 546321, 563214, 564213, 564312, 564321, 645321.
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
b(u+j-1, o-j, `if`(u+j-3<j, 0, j)), j=1..o)+convert(series(
`if`(t=-2, x, 1)*add(b(u-j, o+j-1, `if`(j<t or t=-2, 0,
`if`(t>0, -1, `if`(t=-1, -2, 0)))), j=1..u), x, 2), polynom))
end:
a:= n-> coeff(b(n, 0$2), x, 1):
seq(a(n), n=5..25);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[b[u + j - 1, o - j, If[u + j - 3 < j, 0, j]], {j, 1, o}] + Expand[If[t == -2, x, 1]*Sum[b[u - j, o + j - 1, If[j < t || t == -2, 0, If[t > 0, -1, If[t == -1, -2, 0]]]], {j, 1, u}]]];
a[n_] := Coefficient[b[n, 0, 0], x, 1];
Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Nov 01 2021, after Alois P. Heinz *)
CROSSREFS
Column k=1 of A264781.
Sequence in context: A004991 A228008 A101602 * A062199 A199528 A124797
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 27 2015
STATUS
approved