OFFSET
1,8
LINKS
Seiichi Manyama, Rows n = 1..140, flattened (Rows n = 1..50 from G. C. Greubel)
M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5
FORMULA
T(n,1) = 1. T(n,k+1) = Sum_{d|n, d<n} T(n/d-1,k) = Sum_{d|n, d>1} T(d-1,k).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 1, 2, 1, 1;
1, 3, 2, 2, 1, 1;
...
T(6,3) = 2 because of the 3 partitions of 6 into 3 parts, [4,1,1] and [2,2,2] meet the definition; [3,2,1] fails because 2 does not divide 3.
MATHEMATICA
T[_, 1] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, If[#==1, 0, T[#-1, k-1]]& ]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)
CROSSREFS
KEYWORD
AUTHOR
Franklin T. Adams-Watters, Sep 20 2006
STATUS
approved