login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122934
Triangle T(n,k) = number of partitions of n into k parts, with each part size divisible by the next.
9
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 4, 2, 2, 1, 1, 1, 2, 4, 2, 4, 2, 2, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 1, 3, 4, 5, 3, 4, 2, 2, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 1, 5, 4, 6, 5, 6, 3, 4, 2, 2, 1, 1, 1, 3, 4, 7, 6, 7, 6, 6, 3, 4, 2, 2, 1, 1
OFFSET
1,8
LINKS
M. Benoumhani, M. Kolli, Finite topologies and partitions, JIS 13 (2010) # 10.3.5
FORMULA
T(n,1) = 1. T(n,k+1) = Sum_{d|n, d<n} T(n/d-1,k) = Sum_{d|n, d>1} T(d-1,k).
EXAMPLE
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 1, 2, 1, 1;
1, 3, 2, 2, 1, 1;
...
T(6,3) = 2 because of the 3 partitions of 6 into 3 parts, [4,1,1] and [2,2,2] meet the definition; [3,2,1] fails because 2 does not divide 3.
MATHEMATICA
T[_, 1] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, If[#==1, 0, T[#-1, k-1]]& ]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 30 2016 *)
CROSSREFS
Column k=1..4 give A057427, A032741, A049822, A121895.
Row sums give A003238.
Sequence in context: A151683 A133912 A277231 * A072170 A373819 A368885
KEYWORD
easy,nonn,tabl
AUTHOR
STATUS
approved