login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = number of partitions of n into k parts, with each part size divisible by the next.
9

%I #19 Jan 30 2022 11:41:56

%S 1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,3,2,2,1,1,1,1,3,2,2,1,1,1,3,2,4,2,2,

%T 1,1,1,2,4,2,4,2,2,1,1,1,3,4,5,3,4,2,2,1,1,1,1,3,4,5,3,4,2,2,1,1,1,5,

%U 4,6,5,6,3,4,2,2,1,1,1,1,5,4,6,5,6,3,4,2,2,1,1,1,3,4,7,6,7,6,6,3,4,2,2,1,1

%N Triangle T(n,k) = number of partitions of n into k parts, with each part size divisible by the next.

%H Seiichi Manyama, <a href="/A122934/b122934.txt">Rows n = 1..140, flattened (Rows n = 1..50 from G. C. Greubel)</a>

%H M. Benoumhani, M. Kolli, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Benoumhani/benoumhani6.html">Finite topologies and partitions</a>, JIS 13 (2010) # 10.3.5

%F T(n,1) = 1. T(n,k+1) = Sum_{d|n, d<n} T(n/d-1,k) = Sum_{d|n, d>1} T(d-1,k).

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 2, 1, 1;

%e 1, 1, 2, 1, 1;

%e 1, 3, 2, 2, 1, 1;

%e ...

%e T(6,3) = 2 because of the 3 partitions of 6 into 3 parts, [4,1,1] and [2,2,2] meet the definition; [3,2,1] fails because 2 does not divide 3.

%t T[_, 1] = 1; T[n_, k_] := T[n, k] = DivisorSum[n, If[#==1, 0, T[#-1, k-1]]& ]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 30 2016 *)

%Y Column k=1..4 give A057427, A032741, A049822, A121895.

%Y Row sums give A003238.

%K easy,nonn,tabl

%O 1,8

%A _Franklin T. Adams-Watters_, Sep 20 2006