login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003238 Number of rooted trees with n vertices in which vertices at the same level have the same degree.
(Formerly M0628)
195
1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 40, 41, 53, 61, 77, 78, 104, 105, 134, 147, 175, 176, 227, 233, 275, 294, 350, 351, 438, 439, 516, 545, 624, 640, 774, 775, 881, 924, 1069, 1070, 1265, 1266, 1444, 1521, 1698, 1699 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Also, number of sequences of positive integers a_1, a_2, ..., a_k such that 1 + a_1*(1 + a_2*(...(1 + a_k) ... )) = n. If you take mu(a_1)*mu(a_2)*...*mu(a_k) for each sequence you get 1's 0's and -1's. Add them up and you get the terms for A007554. - Christian G. Bower, Oct 15 1998
Note that this applies also to planar rooted trees and other similar objects (mountain ranges, parenthesizations) encoded by A014486. - Antti Karttunen, Sep 07 2000
Equals sum of (n-1)-th row terms of triangle A152434. - Gary W. Adamson, Dec 04 2008
Equals the eigensequence of A051731, the inverse binomial transform. - Gary W. Adamson, Dec 26 2008
From Emeric Deutsch, Aug 18 2012: (Start)
The considered rooted trees are called generalized Bethe trees; in the Goldberg-Livshitz reference they are called uniform trees.
Also, a(n) = number of partitions of n-1 in which each part is divisible by the next. Example: a(5)=5 because we have 4, 31, 22, 211, and 1111.
There is a simple bijection between generalized Bethe trees with n+1 vertices and partitions of n in which each part is divisible by the next (the parts are given by the number of edges at the successive levels). We have the correspondences: number of edges --- sum of parts; root degree --- last part; number of leaves --- first part; height --- number of parts. (End)
a(n+1) = a(n) + 1 if and only if n is prime. - Jon Perry, Nov 24 2012
According to the MathOverflow link, log(a(n)) ~ log(4)*log(n)^2, and a more precise asymptotic expansion is similar to that of A018819 and hence A000123, so the conjecture in the Formula section is partly correct. - Andrey Zabolotskiy, Jan 22 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Gati, F. Harary, R. W. Robinson, Line colored trees with extendable automorphisms, Acta Mathematica Scientia 2.1 (1982), 105-110. (Annotated scanned copy)
M. K. Goldberg and E. M. Livshits, On minimal universal trees, Mathematical Notes of the Acad. of Sciences of the USSR, 4, 1968, 713-717 (translation from the Russian Mat. Zametki 4 1968 371-379).
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
B. S. Kochkarev, Absolutely symmetric trees and complexity of natural number, arXiv:1205.0344 [math.CO], 2012.
O. Rojo, Spectra of weighted generalized Bethe trees joined at the root, Linear Algebra and its Appl., 428, 2008, 2961-2979.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Transforms
FORMULA
Shifts one place left under inverse Moebius transform: a(n+1) = Sum_{k|n} a(k).
Conjecture: log(a(n)) is asymptotic to c*log(n)^2 where 0.4 < c < 0.5 - Benoit Cloitre, Apr 13 2004
For n > 1, a(n) = (1/2) * A068336(n) and Sum_{k = 1..n} a(k) = A003318(n). - Ralf Stephan, Mar 27 2004
Generating function P(x) for the sequence with offset 2 obeys P(x) = x^2*(1 + Sum_{n >= 1} P(x^n)/x^n). [Harary & Robinson]. - R. J. Mathar, Sep 28 2011
a(n) = 1 + sum of a(i) such that n == 1 (mod i). - Jon Perry, Nov 20 2012
From Ilya Gutkovskiy, Apr 28 2019: (Start)
G.f.: x * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
L.g.f.: -log(Product_{n>=1} (1 - x^n)^(a(n)/n)) = Sum_{n>=1} a(n+1)*x^n/n. (End)
EXAMPLE
a(4) = 3 because we have the path P(4), the tree Y, and the star \|/ . - Emeric Deutsch, Aug 18 2012
The planted achiral trees with up to 7 nodes are:
1 -
1 (-)
2 (--), ((-))
3 (---), ((--)), (((-)))
5 (----), ((-)(-)), ((---)), (((--))), ((((-))))
6 (-----), ((----)), (((-)(-))), (((---))), ((((--)))), (((((-)))))
10 (------), ((-)(-)(-)), ((--)(--)), (((-))((-))), ((-----)), (((----))), ((((-)(-)))), ((((---)))), (((((--))))), ((((((-)))))). - Gus Wiseman, Jan 12 2017
MAPLE
with(numtheory): aa := proc (n) if n = 0 then 1 else add(aa(divisors(n)[i]-1), i = 1 .. tau(n)) end if end proc: a := proc (n) options operator, arrow: aa(n-1) end proc: seq(a(n), n = 1 .. 48); # Emeric Deutsch, Aug 18 2012
A003238:= proc(n) option remember; uses numtheory; add(A003238(m), m=divisors(n-1)) end proc;
A003238(1):= 1;
[seq(A003238(n), n=1..48)]; # Robert Israel, Mar 10 2014
MATHEMATICA
(* b = A068336 *) b[1] = 1; b[n_] := b[n] = 1 + Sum[b[k], {k, Divisors[n-1]}]; a[n_] := b[n]/2; a[1] = 1; Table[ a[n], {n, 1, 48}] (* Jean-François Alcover, Dec 20 2011, after Ralf Stephan *)
achi[n_]:=If[n===1, 1, Total[achi/@Divisors[n-1]]]; Array[achi, 50] (* Gus Wiseman, Jan 12 2017 *)
PROG
(JavaScript)
a = new Array();
for (i = 1; i < 50; i++) a[i] = 1;
for (i = 3; i < 50; i++) for (j = 2; j < i; j++) if (i % j == 1) a[i] += a[j];
document.write(a + "<br>"); // Jon Perry, Nov 20 2012
(Haskell)
a003238 n = a003238_list !! (n-1)
a003238_list = 1 : f 1 where
f x = (sum (map a003238 $ a027750_row x)) : f (x + 1)
-- Reinhard Zumkeller, Dec 20 2014
CROSSREFS
Row sums of A122934 (offset by 1).
Sequence in context: A325354 A298363 A018396 * A051839 A130714 A130689
KEYWORD
nonn,nice,eigen
AUTHOR
EXTENSIONS
Description improved by Christian G. Bower, Oct 15 1998
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:50 EDT 2024. Contains 370951 sequences. (Running on oeis4.)