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LINE COLORED TREES WITH
EXTENDABLE AUTOMORPHISMS*

Georg Gati) Frank Harary?) Robert W Robinson3)
Abstract

An E-tree is a rooted line-colored tree such that every automorphism of a subtree contain-€
ing the root can be extended to an automorphism of the entire tree. When only ome color is
used, E-trees correspond both to achiral planted trees and to partitions with successively dj-
visible parts The exact numbers of E-trees with n points and colors from a store of ¢ are found,
with and without the restriction that each color should be used at least one_ Asymptotic for-
mules for these quantities are discussed for ¢ fixed and s co .

§ 1 Introduction

An “E—tree” was first introduced by Gati(3), motivated by an
application to the theory of complexity of algorithms based on Enge-
ler(1), By recursive definition, a rooted tree T with each line color-

~ed with oxne of ¢ given colors and having root point wis an E-tree if

(@) T is the trivial rooted tree, or
(b ) all principal branches with the same stem color are isomor—
phic, and for each principal branch B of T, the rooted
tree B-w is also an E-tree,
When c=1, these correspond precisely to the achiral planted trees
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counted in [6]. Figure 1 shows all six E-trees with p=¢ points having
one color, ‘

vy Y]

Figure 1, The E-trees with one color having six points

Y -

When c>2, the structure of E~trees is more complex, The original
concept(3) of an E-tree was a line-colored rooted tree T such that
every automorphism of & subtree containing the root can be extended
to an automorphism of 7, Obviously any E-tree has this property,
We now show the converse

Suppose P is a planted tree with root u and stem uv, and T is the
tree p-u rooted at v, Then it is also clear that P is an E-tree if and
only if 7 is_We say that T is obtained {from P by pruning the root,

Now to prove the converse, (a) holds as the trivial tree trivially
has the extendability property, To verify (b) we first note for a
nontrivial tree T that.the root and its incident lines form a (star)
subtree in which any two lines of the same color are interchanged by
some automorphism, Thus to have the extendability property, any
two principal branches of T having the same stem color must be iso-
morphic, Secondly, any automorphism of a nontrivial subtree of a
principal branch B is extendable to an automorphism a of T, The
stem being fixed in the automorphism of the subtree, it is fixed by «
in T, so the restriction of @ to B is an automorphism of B, Thus
each principal branch has the extendabilityp property, By pruning
the root, it then follows by induction that each principal branch is
an E-tree,

Our object is to count E-trees in several ways, first those with
at most ¢ colors, deriving both geperating functions and recurrence
relations;then those needing exactly ¢ colors;and finally,the asymp-
totic numbers, .

- §2 Counting

Let .E, be the number of different E-trees on n points using
colors from a fixed set of cardinality ¢, and let
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EE(x) = 2 :Eux”
N
be the ordinary generating function, We first consider the case ¢ = 1,
for which the lower left subscript ¢ is omitted, Then E(x) satisfies
the functional equation,

E®=x (1+ Y E=)), (1)
i1
In fact, x stands for the trivial tree (on onme point) and x E(xt
enumerates E-trees of a single color in which the root is incident
with precisely § lines, In that case the § principal branches must alj
be isomorphic, and { identical copies of & pruned branch are enumerat—
ed by E(x!),
A recurrence suitable for computation is readily deduced from
(1) on equating coefficients of x**1 Oue finds £, =1, and for n>1,

E,. =YE,. (2)

d1in

A slight improvement in computatonal facility is obtained by con-
sidering E,,, as a function of n, so that standard moebius inversion
gives

E-+1‘E-— Z y(d)E,,,“# . (3)

1<d|l= -

The first few values of E, are shown in Table 1. It may be noted that
E =P,,,, where P.,, isthe number of achiral planted trees discussed
in [6], A 1—1 correspondence is obtained simply by pruning the root
from the planted trees,

The same reasoning applies to LE(x), ¢>1, as for E(x) except
that now there are ¢ different stem colors possible at the root, Since
the choices for the different colors are independent, one can simply
take the ¢’th power of the sum on the right with E(x)* replaced by
E(x). Then

E(x)=x (1 +i,E(x"))‘, (4)

i=1
In expressing a recurrence for E, it is convenient to give the
sum on the right of (4) a name, say ,S(x), If we denote the coeffi-
cient of x* by .S, then ¢S5, =1 and for n>,
cS- = Z s‘Ed * ( 5 )

din
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Now on differentiating (4) we have
S@)(E(x)/2)" =c-( E(x)/x)- 5" (x).
- Equating coefficients of x"~2 gives for n>1,
E= o7 T e+ Di-n+ )., E, . (6)

i=1

With E, =1, (5) and (6) together provide an efficient recurrence for
computing numerical values, The first few of these are shown in
Table ], '

Of course (5) and (6) also apply to the earlier case c = 1, although
somewhat different from (2) or (3). By (2) it can be seen that
S.=E,,,, and when that is substituted into (6) we have the curious
identity,

®=1
2(25—”+1)E.'+;E.-.~=0 (7)
1=0 .

for n>1, As (7) is true of any sequence, this gives a circuitous de-
monstration that (5) and (6) for c=] are equivalent to (2).

The standard method of inclusion-exclusion can be used to com-
pute the numbers of E-trees according to how many clors are actually
used, Let ,F', be the number of E-trees of order n using all of the
colors from a fixed list of ¢, It is natural in this context to take
oFy=1and F, =0 for all i>0, The number of ways in which a subset
of j colors can be chosen in (¢), The number of E-trees of order n on
the remaining c—j colors is (e-i)E.. Thus one finds that

o= HE(DH(-1) (8)
for all c=0 and n>1, In this way the first few values of J. were
computed, as displayed in Table 2,

The maximum possible number of colors on the limes of a tree
with n points is n—1, since that is the number of lines, In that case
a root is specified and each line is labeled by a separate color, so
that the tree is effectively labeled, A 1—1 correspondence can be
established at once by assigning the colors numbers l,--yn—1. Then
an E-tree of order n using these n—1 colors is point-labeled by as-
signing 1 to the root, and to each other point the number 1+¢ where
i is the label of the first line on the unique path to the root, From
this and the well known formula of Cayley(5.p.20) for counting
labeled trees, we have ,_,E_ =n""* for n>1, This can be seen in
Table 2 for 1<n<s,
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n ] 4En 5En
1 1 1
2 4 5

3 © 26 40

(6) 4 172 335

5 1243 3070

recurrence for 6 9364 | 29526
are shown in 7

1

‘ . 8
c=1, although \O(‘ %Z 9
be seen that 10

coliors —
«/

e the curious (&
y € ! “CN\C&S Table 1@%5 with at most

o . ) 0 n _?Fﬂ 4Fﬂ 5Fn
) 1 0 0 0

circuitous de- 2 0 0 0

(2). 3 0 0 0
: used to com- 4 16 0 0
rs are actually 5 177 125 0
ing all of the 6 1874 2432 1296
ntext to take 7 |
which a subset 8
; of order n on 9
at 10 I —t

Table 2/E-trees with exactly b\colors,
; (8) - et B o O
’ : ATTEY-

of ,F, were §3 Asymptotics
ines of & tree We have already mentioned that the E-trees counted by E(x) are

In that case » precisely the achiral rooted trees enumerated in [6]. One of us (RWR)
ate color. so noticed that these particular trees are faithfully represented by the
\dence cax; be . partitions of n in which each part divides the next one, and asked
...n—1 Then , Paul Erdds in 1975 how many there are, This led to the paper by
ab:aled i)y 2 . ' Erdos and Loxton(2) in which their asymptotic behavior was studi-
er 14+ where ed, .
. i From They used the notations

for counting : an)=E,,; Qx)= Y q(m)
in be seen in v<nas

and established that
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2
1 x 1 1 log log2
1Dgo(x)_zlog 2(log logx) +(7+ log 2 * Tog 2 >1ng

log log 2 log x—1log log x
—(1 +—log2 )loglogx+V< Tog 2 )+0(1)

where V(1) is periodic with period / but V is not available explicitly
' For ¢>1 the asymptotic behavior of . E, is much simpler than
that of E,, Coansider, for example, ¢=2, The path of length n—1
rooted at oné end is an E-tree no matter how its lines are colored, so
,E.>2""" for all n=1, Conversely, if T, is the number of rooted
trees of order n, then ,E, <2~ T, since 2°7' is an upper bound for
the number of distinct ways of line-coloring any one of those trees,
It follows at once that if 7=0,3383219 --- denotes the radius of con-
vergence of T(x) and £, is that of ,E(x), then

r 1

7<L\7.
Hence the methods of [7] can be applied to show that

2E.=a,n7% L, (1+0(1/m).

Here the constants @, and £, can be determined as closely as desired,
again by the standard methods, More generally but in the same way,
for any ¢>1 oce has

LIPI a2
and ¢ ¢

E =a nmt2000 (14 0(1/m).
Here c is fixed while n—»oo, £, is the radius of convergence of E(x),
and a, depends on c but not n, as does the bound implicit in the 0(1/n)
remainder term,

It seems clear that £,>C.,, for all c=1, (That {,=1 was shown
in[2].) Assuming this, it follows from (8) that F,~,E, for fixed
c>=] asn—»oo,
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