OFFSET
1,2
COMMENTS
An achiral tree is either (case 1) a single node or (case 2) a finite constant sequence (t,t,..,t) of achiral trees. Only in case 2 is an achiral tree considered to be a generalized Bethe tree (according to A214577).
LINKS
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
EXAMPLE
Triangle begins:
1,
2,
3, 4,
5, 7, 8,
9, 11, 16, 17, 19,
23, 31, 32, 53, 59, 67,
25, 27, 49, 64, 83, 127, 131, 241, 277, 331.
MATHEMATICA
nn=7; MGNumber[_[]]:=1; MGNumber[x:_[__]]:=If[Length[x]===1, Prime[MGNumber[x[[1]]]], Times@@Prime/@MGNumber/@x];
cits[n_]:=If[n===1, {1}, Join@@Table[ConstantArray[#, (n-1)/d]&/@cits[d], {d, Divisors[n-1]}]];
Table[Sort[MGNumber/@(cits[n]/.(1->{}))], {n, nn}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Jan 12 2017
STATUS
approved