

A280993


Primes such that absolute value of difference between largest digit and the sum of all the other digits is a cube.


1



11, 19, 23, 43, 67, 89, 101, 109, 113, 131, 157, 167, 179, 197, 199, 211, 223, 241, 257, 263, 269, 311, 313, 331, 337, 347, 353, 359, 373, 379, 397, 421, 431, 449, 461, 463, 523, 541, 571, 593, 607, 617, 641, 643, 661, 683, 719, 733, 739, 743
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If the largest digit L (say) is repeated, the criterion is that that L  (sum of all digits except for one copy of L) is a cube.


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

The prime 2731 is a term, because 7231=1 is a cube.
The prime 13 is not in sequence, as 31=2, and 2 is not a cube.
The prime 313 is a term because 3  (1+3) = 1 is a cube.


PROG

(PARI) listA280993(k, {k0=5})={my(H=List(), y); forprime(z=prime(k0), prime(k), y=digits(z); if(ispower(abs(vecsum(y)2*vecmax(y)), 3), listput(H, z))); return(vector(#H, i, H[i]))} \\ Looks for those belonging terms between prime(k0) and prime(k).  R. J. Cano, Feb 06 2017


CROSSREFS

A156753 and A156979 are subsequences.
Sequence in context: A287061 A161601 A031406 * A105908 A084654 A089172
Adjacent sequences: A280990 A280991 A280992 * A280994 A280995 A280996


KEYWORD

nonn,base


AUTHOR

Osama Abuajamieh, Jan 14 2017


STATUS

approved



