The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A280992 Squarefree triangular numbers that are products of consecutive primes. 0
 1, 3, 6, 15, 105, 210, 255255 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS No more terms up to the 5000000th triangular number. If a(8) exists, it's divisible by a prime p > prime(2000) = 17389. - David A. Corneth, Oct 21 2017 LINKS EXAMPLE The triangular number 255255 = 714*715/2 is a term because 255255 = 3*5*7*11*13*17 is a product of distinct consecutive primes. 1 (the empty product) is a term, so is 3 (the product of just one triangular number). MAPLE # reuses code of A097889 and A061304 isA280992 := proc(n)     isA097889(n) and isA061304(n) ; end proc: for t from 0 do     n := t*(t+1)/2 ;     if isA280992(t) then         print(t) ;     end if; end do: # R. J. Mathar, Oct 20 2017 MATHEMATICA Select[PolygonalNumber@ Range[10^5], And[NoneTrue[#[[All, -1]], # > 1 &], Union@ Differences[PrimePi[#[[All, 1]] ] ] == {1}] &@ FactorInteger@ # &] (* Michael De Vlieger, Oct 06 2017 *) PROG (PARI) is(n) = my(f=factor(n)[, 1]); for(k=1, #f-1, if(f[k+1]!=nextprime(f[k]+1), return(0))); ispolygonal(n, 3) && issquarefree(n) search(start) = if(start < 4, if(start < 2, print1(1, ", ")); print1(3, ", ")); forcomposite(c=start, , if(is(c), print1(c, ", "))) /* Start a search from 1 upwards as follows: */ search(1) \\ Felix FrÃ¶hlich, Oct 21 2017 [Corrected Jun 10, 2019] (PARI) uptoprime(n) = {my(prim = vector(n), i = 2, res = List([1]));  prim[1] = 2; forprime(p = 3, , prim[i] = prim[i - 1] * p; i++; if(i>n, break)); for(i=1, n, if(issquare(8 * prim[i] + 1), listput(res, prim[i])); for(j=1, i-1, c = prim[i]/prim[j]; if(issquare(8 * c + 1), listput(res, c)))); listsort(res); res} \\ David A. Corneth, Oct 21 2017 CROSSREFS Cf. A000217, A061304, A097889. Sequence in context: A013277 A190187 A144549 * A013270 A013276 A110809 Adjacent sequences:  A280989 A280990 A280991 * A280993 A280994 A280995 KEYWORD nonn,more AUTHOR Rick L. Shepherd, Jan 13 2017 EXTENSIONS 1 and 3 prepended by David A. Corneth, Oct 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 21:32 EDT 2021. Contains 346455 sequences. (Running on oeis4.)