login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280992
Squarefree triangular numbers that are products of consecutive primes.
0
1, 3, 6, 15, 105, 210, 255255
OFFSET
1,2
COMMENTS
No more terms up to the 5000000th triangular number.
If a(8) exists, it's divisible by a prime p > prime(2000) = 17389. - David A. Corneth, Oct 21 2017
EXAMPLE
The triangular number 255255 = 714*715/2 is a term because 255255 = 3*5*7*11*13*17 is a product of distinct consecutive primes.
1 (the empty product) is a term, so is 3 (the product of just one triangular number).
MAPLE
# reuses code of A097889 and A061304
isA280992 := proc(n)
isA097889(n) and isA061304(n) ;
end proc:
for t from 0 do
n := t*(t+1)/2 ;
if isA280992(t) then
print(t) ;
end if;
end do: # R. J. Mathar, Oct 20 2017
MATHEMATICA
Select[PolygonalNumber@ Range[10^5], And[NoneTrue[#[[All, -1]], # > 1 &], Union@ Differences[PrimePi[#[[All, 1]] ] ] == {1}] &@ FactorInteger@ # &] (* Michael De Vlieger, Oct 06 2017 *)
PROG
(PARI) is(n) = my(f=factor(n)[, 1]); for(k=1, #f-1, if(f[k+1]!=nextprime(f[k]+1), return(0))); ispolygonal(n, 3) && issquarefree(n)
search(start) = if(start < 4, if(start < 2, print1(1, ", ")); print1(3, ", ")); forcomposite(c=start, , if(is(c), print1(c, ", ")))
/* Start a search from 1 upwards as follows: */
search(1) \\ Felix Fröhlich, Oct 21 2017 [Corrected Jun 10, 2019]
(PARI) uptoprime(n) = {my(prim = vector(n), i = 2, res = List([1])); prim[1] = 2; forprime(p = 3, , prim[i] = prim[i - 1] * p; i++; if(i>n, break));
for(i=1, n, if(issquare(8 * prim[i] + 1), listput(res, prim[i])); for(j=1, i-1, c = prim[i]/prim[j]; if(issquare(8 * c + 1), listput(res, c)))); listsort(res); res} \\ David A. Corneth, Oct 21 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Rick L. Shepherd, Jan 13 2017
EXTENSIONS
1 and 3 prepended by David A. Corneth, Oct 21 2017
STATUS
approved