The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013277 tanh(log(x+1)-arcsinh(x))=-1/2!*x^2+3/3!*x^3-6/4!*x^4+15/5!*x^5... 1
0, 0, -1, 3, -6, 15, -90, 315, 2520, -42525, 340200, -3586275, 56133000, -662837175, 4767562800, -32564156625, 551675124000, -4287613955625, -143803315656000, 4293290973596625, -53086088130075000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
Recurrence: 4*(n-1)*(4*n^2 - 32*n + 57)*a(n) = -8*(n-2)*n*(4*n^2 - 28*n + 39)*a(n-1) - 4*(n-1)*n*(4*n-11)*(4*n^2 - 28*n + 39)*a(n-2) - 4*(n-5)*(n-2)*(n-1)*n*(20*n^2 - 104*n + 129)*a(n-3) - (n-3)*(n-2)*(n-1)*n*(68*n^3 - 756*n^2 + 2665*n - 2877)*a(n-4) - 6*(n-4)*(n-3)*(n-2)*(n-1)*n*(8*n^3 - 96*n^2 + 356*n - 383)*a(n-5) - 5*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*(4*n^2 - 24*n + 29)*a(n-6). - Vaclav Kotesovec, Feb 04 2015
a(n) ~ n! * 4 * sqrt(2) * (cos(Pi*n/2)-sin(Pi*n/2)) * (7-(-1)^n) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 04 2015
MATHEMATICA
CoefficientList[Series[-Tanh[ArcSinh[x] - Log[1 + x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2015 *)
CROSSREFS
Sequence in context: A102936 A009192 A013273 * A190187 A144549 A280992
KEYWORD
sign
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Prepended missing a(0)=a(1)=0 from Vaclav Kotesovec, Feb 04 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 05:55 EDT 2024. Contains 373402 sequences. (Running on oeis4.)