The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A013277 tanh(log(x+1)-arcsinh(x))=-1/2!*x^2+3/3!*x^3-6/4!*x^4+15/5!*x^5... 1
 0, 0, -1, 3, -6, 15, -90, 315, 2520, -42525, 340200, -3586275, 56133000, -662837175, 4767562800, -32564156625, 551675124000, -4287613955625, -143803315656000, 4293290973596625, -53086088130075000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..448 FORMULA Recurrence: 4*(n-1)*(4*n^2 - 32*n + 57)*a(n) = -8*(n-2)*n*(4*n^2 - 28*n + 39)*a(n-1) - 4*(n-1)*n*(4*n-11)*(4*n^2 - 28*n + 39)*a(n-2) - 4*(n-5)*(n-2)*(n-1)*n*(20*n^2 - 104*n + 129)*a(n-3) - (n-3)*(n-2)*(n-1)*n*(68*n^3 - 756*n^2 + 2665*n - 2877)*a(n-4) - 6*(n-4)*(n-3)*(n-2)*(n-1)*n*(8*n^3 - 96*n^2 + 356*n - 383)*a(n-5) - 5*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n*(4*n^2 - 24*n + 29)*a(n-6). - Vaclav Kotesovec, Feb 04 2015 a(n) ~ n! * 4 * sqrt(2) * (cos(Pi*n/2)-sin(Pi*n/2)) * (7-(-1)^n) / (25 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 04 2015 MATHEMATICA CoefficientList[Series[-Tanh[ArcSinh[x] - Log[1 + x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2015 *) CROSSREFS Sequence in context: A102936 A009192 A013273 * A190187 A144549 A280992 Adjacent sequences: A013274 A013275 A013276 * A013278 A013279 A013280 KEYWORD sign AUTHOR Patrick Demichel (patrick.demichel(AT)hp.com) EXTENSIONS Prepended missing a(0)=a(1)=0 from Vaclav Kotesovec, Feb 04 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 05:55 EDT 2024. Contains 373402 sequences. (Running on oeis4.)