|
|
A061304
|
|
Squarefree triangular numbers.
|
|
10
|
|
|
1, 3, 6, 10, 15, 21, 55, 66, 78, 91, 105, 190, 210, 231, 253, 406, 435, 465, 561, 595, 703, 741, 861, 903, 946, 1081, 1326, 1378, 1653, 1711, 1770, 1830, 1891, 2145, 2211, 2278, 2346, 2415, 2485, 2701, 2926, 3003, 3081, 3403, 3486, 3570, 3655, 3741, 4186, 4278
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
105 = 3 * 5 * 7 is a squarefree triangular number.
|
|
MAPLE
|
isA061304 := proc(n)
isA000217(n) and issqrfree(n) ;
simplify(%) ;
end proc:
for n from 1 to 5000 do
if isA061304(n) then
printf("%d, ", n);
end if;
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) isA078779F(f)=for(i=2, #f~, if(f[i, 2]>1, return(0))); #f~==0 || f[1, 2]==1 || (f[1, 2]==2 && f[1, 1]==2)
list(lim)=my(v=List(), ok=1); forfactored(n=2, (sqrtint(lim\1*8+1)+1)\2, e=n[2][, 2]; if(isA078779F(n[2]), if(ok, listput(v, binomial(n[1], 2)), ok=1), ok=0)); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|