login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352925
Primes p such that there exist primes q, r (r != 2) such that p+1 = 2^q*r.
2
11, 19, 23, 43, 67, 103, 151, 163, 211, 223, 283, 331, 383, 487, 523, 547, 607, 631, 691, 787, 823, 907, 991, 1051, 1123, 1171, 1303, 1447, 1531, 1543, 1663, 1723, 1783, 1831, 1867, 1951, 2011, 2083, 2143, 2251, 2347, 2371, 2467, 2503, 2647, 2707, 2731, 2791
OFFSET
1,1
LINKS
Roberto Conti and Pierluigi Contucci, A Natural Avenue, arXiv:2204.08982 [math.NT], 2022.
MAPLE
f:= p-> (q-> andmap(isprime, [q, (p+1)/2^q]))(padic[ordp](p+1, 2)):
select(f, [ithprime(i)$i=1..500])[]; # Alois P. Heinz, May 01 2022
MATHEMATICA
Select[Prime[Range[400]], PrimeQ[(q = IntegerExponent[# + 1, 2])] && PrimeQ[(# + 1)/2^q] &] (* Amiram Eldar, May 01 2022 *)
PROG
(Python)
from sympy import isprime, nextprime
from itertools import islice
def valuation(n, p):
v = 0
while n%p == 0: n //= p; v += 1
return v, n
def agen(): # generator of terms
p = 2
while True:
q, r = valuation(p+1, 2)
if isprime(q) and isprime(r): yield p
p = nextprime(p)
print(list(islice(agen(), 49))) # Michael S. Branicky, May 01 2022
CROSSREFS
Sequence in context: A352480 A031406 A280993 * A105908 A084654 A089172
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 01 2022
EXTENSIONS
a(12) and beyond from Michael S. Branicky, May 01 2022
STATUS
approved