|
|
A007097
|
|
Primeth recurrence: a(n+1) = a(n)-th prime.
(Formerly M0734)
|
|
281
|
|
|
1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077, 98552043847093519, 4123221751654370051, 188272405179937051081, 9332039515881088707361, 499720579610303128776791, 28785866289100396890228041
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A007097(n) = Min {k : A109301(k) = n} = the first k whose rote height is n, the level set leader or minimum inverse function corresponding to A109301. - Jon Awbrey, Jun 26 2005
a(n) is the Matula-Goebel number of the rooted path tree on n+1 vertices. The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Conjecture: log(a(1))*log(a(2))*...*log(a(n)) ~ a(n). - Thomas Ordowski, Mar 26 2015
|
|
REFERENCES
|
Lubomir Alexandrov, unpublished notes, circa 1960.
L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Lubomir Alexandrov, "The Eratosthenes Progression p(k+1)=π^{-1}(p(k)), k=0,1,2,..., p(0)=1,4,6,... Determines an Inner Prime Number Distribution Law", Second Int. Conf. "Modern Trends in Computational Physics", Jul 24-29, 2000, Dubna, Russia, Book of Abstracts, p. 19. Available at arXiv:math/0105154 [math.NT], 2001.
|
|
FORMULA
|
a(n) = prime^{[n]}(1), with the prime function prime(k) = A000040(k), with a(0) = 1. See the name and the programs. - Wolfdieter Lang, Apr 03 2018
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) print1(p=1); until(, print1(", "p=prime(p))) \\ M. F. Hasler, Oct 09 2011
(Haskell)
a007097 n = a007097_list !! n
(GAP) P:=Filtered([1..60000], IsPrime);;
a:=[1];; for n in [2..10] do a[n]:=P[a[n-1]]; od; a; # Muniru A Asiru, Dec 22 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(20)-a(21) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011
a(23) from David Baugh using Kim Walisch's primecount, May 16 2016
|
|
STATUS
|
approved
|
|
|
|