login
A227413
a(1)=1, a(2n)=nthprime(a(n)), a(2n+1)=nthcomposite(a(n)), where nthprime = A000040, nthcomposite = A002808.
34
1, 2, 4, 3, 6, 7, 9, 5, 8, 13, 12, 17, 14, 23, 16, 11, 10, 19, 15, 41, 22, 37, 21, 59, 27, 43, 24, 83, 35, 53, 26, 31, 20, 29, 18, 67, 30, 47, 25, 179, 58, 79, 34, 157, 54, 73, 33, 277, 82, 103, 40, 191, 62, 89, 36, 431, 114, 149, 51, 241, 75, 101, 39, 127, 46
OFFSET
1,2
COMMENTS
Inverse permutation of A135141.
Shares with A073846 the property that the other bisection consists of just primes and the other bisection of just nonprimes.
FORMULA
a(1)=1, a(2n) = A000040(a(n)), a(2n+1) = A002808(a(n)).
A007097(n) = a(A000079(n)).
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(definec (A227413 n) (cond ((< n 2) n) ((even? n) (A000040 (A227413 (/ n 2)))) (else (A002808 (A227413 (/ (- n 1) 2))))))
(Haskell)
import Data.List (transpose)
a227413 n = a227413_list !! (n-1)
a227413_list = 1 : concat (transpose [map a000040 a227413_list,
map a002808 a227413_list])
-- Reinhard Zumkeller, Jan 29 2014
CROSSREFS
Similarly constructed permutations: A227402, A227404, A227410, A227412. Cf. also A073846, A209636.
Sequence in context: A367262 A358467 A006016 * A217122 A239622 A245604
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Jul 10 2013
STATUS
approved