login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239622
Conjecturally, the irregular triangle of numbers k such that prime(n)^2 is the largest squared prime divisor of binomial(2k,k).
3
0, 1, 2, 4, 3, 6, 7, 9, 10, 11, 12, 21, 22, 28, 29, 30, 31, 36, 37, 54, 55, 57, 58, 110, 171, 784, 786, 5, 8, 15, 16, 17, 20, 35, 42, 45, 50, 51, 52, 53, 56, 59, 60, 77, 80, 133, 134, 135, 136, 156, 157, 158, 159, 160, 161, 170, 210, 211, 212, 400, 401, 402, 651, 652, 785
OFFSET
0,3
COMMENTS
Row 0 lists the numbers k such that binomial(2k,k) is squarefree. Sequence A110494 lists the first term of each row; A239623 lists the conjectured last term; A239624 lists the conjectured length of each row.
EXAMPLE
The irregular triangle begins:
0, 1, 2, 4
3, 6, 7, 9,..., 784, 786
5, 8, 15, 16,..., 652, 785
13, 14, 18, 19,..., 445, 2080
25, 26, 27, 32,..., 783, 902
61, 62, 63, 64,..., 2033, 2034
MATHEMATICA
b = 1; t = Table[b = b*(4 - 2/n); last = 0; Do[If[Mod[b, p^2] == 0, last = p], {p, Prime[Range[PrimePi[Sqrt[2*n]]]]}]; last, {n, 20000}]; t = Join[{0}, t]; Table[Flatten[Position[t, p]] - 1, {p, Join[{0}, Prime[Range[20]]]}]
CROSSREFS
Cf. A059097 (union of first two rows), A110493, A110494, A239623, A239624.
Sequence in context: A006016 A227413 A217122 * A245604 A054239 A305424
KEYWORD
nonn,tabf
AUTHOR
T. D. Noe, Mar 27 2014
STATUS
approved