login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110493 Largest prime p such that p^2 divides binomial(2n,n), or 0 if binomial(2n,n) is squarefree. 6
0, 0, 0, 2, 0, 3, 2, 2, 3, 2, 2, 2, 2, 5, 5, 3, 3, 3, 5, 5, 3, 2, 2, 5, 5, 7, 7, 7, 2, 2, 2, 2, 7, 7, 7, 3, 2, 2, 5, 7, 7, 7, 3, 5, 5, 3, 7, 7, 7, 5, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 3, 11, 11, 11, 11, 11, 5, 5, 5, 5, 5, 5, 11, 11, 11, 11, 11, 3, 5, 5, 3, 7, 7, 11, 11, 13, 13, 13, 13, 13, 13, 5, 5, 5, 11, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Binomial(2n,n) is squarefree for only n = 0, 1, 2, 4. Sequence A059097 lists n such that a(n) = 0 or 2. The plot shows the quadratic nature of this sequence. Sequence A110494 makes the quadratic behavior clearer.

Granville and Ramaré show that if n >= 2082 then a(n) >= sqrt(n/5). - Robert Israel, Sep 04 2019

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

T. D. Noe, Plot of A110493

A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].

EXAMPLE

a(5) = 3 because binomial(10,5) = 252 = (2^2)(3^2)(7).

MAPLE

f:= proc(n) local F;

F:= select(t -> t[2]>=2, ifactors(binomial(2*n, n))[2]);

if F = [] then 0 else max(map(t -> t[1], F)) fi

end proc:

map(f, [$0..100]); # Robert Israel, Sep 04 2019

MATHEMATICA

Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>1&]; If[s=={}, 0, s[[-1, 1]]], {n, 0, 100}]

CROSSREFS

Cf. A110494 (least k such that prime(n)^2 divides binomial(2k, k)).

Cf. A059097, A110494.

Sequence in context: A100949 A152164 A263112 * A118234 A262771 A152039

Adjacent sequences: A110490 A110491 A110492 * A110494 A110495 A110496

KEYWORD

nonn,look

AUTHOR

T. D. Noe, Jul 22 2005

EXTENSIONS

a(0) prepended by T. D. Noe, Mar 27 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 21:40 EDT 2023. Contains 361673 sequences. (Running on oeis4.)