The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357220 a(n) = coefficient of x^n in Sum_{n>=0} x^n/(1 - x*C(x)^n), where C(x) = 1/(1 - x*C(x)) is a g.f. of the Catalan numbers (A000108). 1
 1, 2, 3, 5, 11, 31, 101, 355, 1304, 4938, 19155, 75857, 306075, 1256782, 5248018, 22278742, 96141427, 421787510, 1881594580, 8537257714, 39408291543, 185114771571, 885043068109, 4307374572585, 21340519926034, 107627435856554, 552473684683454, 2885909702592788 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Related Identity due to George E. Andrews: Sum_{n>=0} x^(k*n)/(1 - x^k*q^n) = Sum_{n>=0} q^(n^2) * x^(2*k*n) * (1 + x^k*q^n)/(1 - x^k*q^n), which holds for positive integer k. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA Generating function A(x) = Sum_{n>=0} a(n)*x^n may be expressed by the following formulas, where C(x) = 1/(1 - x*C(x)). (1) A(x) = Sum_{n>=0} x^n/(1 - x*C(x)^n). (2) A(x) = Sum_{n>=0} C(x)^(n^2) * x^(2*n) * (1 + x*C(x)^n)/(1 - x*C(x)^n). (3) A(x-x^2) = Sum_{n>=0} x^n * (1-x)^(2*n) / ((1-x)^n - x*(1-x)). EXAMPLE G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 11*x^4 + 31*x^5 + 101*x^6 + 355*x^7 + 1304*x^8 + 4938*x^9 + 19155*x^10 + 75857*x^11 + 306075*x^12 + ... such that A(x) = 1/(1 - x) + x/(1 - x*C(x)) + x^2/(1 - x*C(x)^2) + x^3/(1 - x*C(x)^3) + x^4/(1 - x*C(x)^4) + x^5/(1 - x*C(x)^5) + ... + x^n/(1 - x*C(x)^n) + ... also A(x) = (1+x)/(1-x) + C(x)*x^2*(1+x*C(x))/(1-x*C(x)) + C(x)^4*x^4*(1+x*C(x)^2)/(1-x*C(x)^2) + C(x)^9*x^6*(1+x*C(x)^3)/(1-x*C(x)^3) + C(x)^16*x^8*(1+x*C(x)^4)/(1-x*C(x)^4) + ... + C(x)^(n^2)*x^(2*n)*(1+x*C(x)^n)/(1-x*C(x)^n) + ... where C(x) = 1/(1 - x*C(x)) begins C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + 16796*x^10 + A000108(n)*x^n + ... PROG (PARI) {a(n) = my(A, C = 1/x*serreverse(x - x^2 + O(x^(n+2)))); A = sum(m=0, n+1, x^m/(1 - x*C^m)); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A000108. Sequence in context: A073680 A079557 A090709 * A112279 A130166 A007097 Adjacent sequences: A357217 A357218 A357219 * A357221 A357222 A357223 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 16 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 13:49 EDT 2024. Contains 373400 sequences. (Running on oeis4.)