OFFSET
0,2
COMMENTS
Related Identity due to George E. Andrews: Sum_{n>=0} x^(k*n)/(1 - x^k*q^n) = Sum_{n>=0} q^(n^2) * x^(2*k*n) * (1 + x^k*q^n)/(1 - x^k*q^n), which holds for positive integer k.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..400
FORMULA
Generating function A(x) = Sum_{n>=0} a(n)*x^n may be expressed by the following formulas, where C(x) = 1/(1 - x*C(x)).
(1) A(x) = Sum_{n>=0} x^n/(1 - x*C(x)^n).
(2) A(x) = Sum_{n>=0} C(x)^(n^2) * x^(2*n) * (1 + x*C(x)^n)/(1 - x*C(x)^n).
(3) A(x-x^2) = Sum_{n>=0} x^n * (1-x)^(2*n) / ((1-x)^n - x*(1-x)).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 11*x^4 + 31*x^5 + 101*x^6 + 355*x^7 + 1304*x^8 + 4938*x^9 + 19155*x^10 + 75857*x^11 + 306075*x^12 + ...
such that
A(x) = 1/(1 - x) + x/(1 - x*C(x)) + x^2/(1 - x*C(x)^2) + x^3/(1 - x*C(x)^3) + x^4/(1 - x*C(x)^4) + x^5/(1 - x*C(x)^5) + ... + x^n/(1 - x*C(x)^n) + ...
also
A(x) = (1+x)/(1-x) + C(x)*x^2*(1+x*C(x))/(1-x*C(x)) + C(x)^4*x^4*(1+x*C(x)^2)/(1-x*C(x)^2) + C(x)^9*x^6*(1+x*C(x)^3)/(1-x*C(x)^3) + C(x)^16*x^8*(1+x*C(x)^4)/(1-x*C(x)^4) + ... + C(x)^(n^2)*x^(2*n)*(1+x*C(x)^n)/(1-x*C(x)^n) + ...
where C(x) = 1/(1 - x*C(x)) begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + 16796*x^10 + A000108(n)*x^n + ...
PROG
(PARI) {a(n) = my(A, C = 1/x*serreverse(x - x^2 + O(x^(n+2))));
A = sum(m=0, n+1, x^m/(1 - x*C^m)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2022
STATUS
approved