login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357217
Array read by descending antidiagonals: T(n,k) is the number of cycles of the permutation given by the order of elimination in the Josephus problem for n numbers and a count of k; n, k >= 1.
2
1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 1, 1, 2, 5, 1, 2, 2, 2, 1, 6, 1, 1, 1, 2, 1, 1, 7, 1, 2, 2, 2, 1, 2, 4, 8, 1, 1, 3, 2, 3, 3, 3, 2, 9, 1, 2, 2, 2, 3, 2, 2, 2, 1, 10, 1, 1, 1, 2, 1, 3, 3, 2, 3, 5, 11, 1, 2, 2, 2, 3, 2, 2, 4, 5, 2, 2, 12, 1, 1, 1, 2, 3, 1, 3, 2, 3, 1, 3, 2, 13
OFFSET
1,3
COMMENTS
n >= 2 is a Josephus_k prime if and only if T(n,k) = 1; see A163782-A163800.
LINKS
James Dowdy and Michael E. Mays, Josephus permutations, Journal of Combinatorial Mathematics and Combinatorial Computing 6 (1989), 125-130.
Wikipedia, Josephus problem
FORMULA
T(n,k+A003418(n)) = T(n,k), i.e., the n-th row is periodic with period A003418(n).
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10
---+------------------------------
1 | 1 1 1 1 1 1 1 1 1 1
2 | 2 1 2 1 2 1 2 1 2 1
3 | 3 2 1 2 1 2 3 2 1 2
4 | 4 2 2 2 2 2 2 2 2 2
5 | 5 1 1 1 3 3 1 3 3 3
6 | 6 1 2 3 2 3 2 1 2 3
7 | 7 4 3 2 3 2 3 2 5 2
8 | 8 2 2 2 4 2 2 4 6 2
9 | 9 1 3 5 3 3 3 3 3 3
10 | 10 5 2 1 2 3 2 1 2 3
For n = 4, k = 2, the order of elimination is (2,4,3,1) (row 4 of A321298). This permutation has two cycles, (1 2 4) and (3), so T(4,2) = 2.
PROG
(Python)
from sympy.combinatorics import Permutation
def A357217(n, k):
return Permutation.josephus(k, n).cycles
CROSSREFS
Cf. A003418, A006694 (column k=2), A163782-A163800 (Josephus primes), A198789, A321298 (the Josephus permutations for k=2).
Sequence in context: A343796 A139462 A236256 * A353595 A317086 A131376
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved