login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198789
Array T(n,k) read by antidiagonals: Last survivor positions in Josephus problem for n numbers and a count of k, n >= 1, k >= 1.
6
1, 1, 2, 1, 1, 3, 1, 2, 3, 4, 1, 1, 2, 1, 5, 1, 2, 2, 1, 3, 6, 1, 1, 1, 2, 4, 5, 7, 1, 2, 1, 2, 1, 1, 7, 8, 1, 1, 3, 3, 2, 5, 4, 1, 9, 1, 2, 3, 2, 4, 1, 2, 7, 3, 10, 1, 1, 2, 3, 4, 4, 6, 6, 1, 5, 11, 1, 2, 2, 3, 1, 5, 3, 3, 1, 4, 7, 12, 1, 1, 1, 4, 2, 3, 5, 1, 8, 5, 7, 9, 13
OFFSET
1,3
COMMENTS
Arrange 1, 2, 3, ..., n clockwise in a circle. Starting the count at 1, delete every k-th integer clockwise until only one remains, which is T(n,k).
The main diagonal (1, 1, 2, 2, 2, 4, 5, 4, ...) is A007495.
Concatenation of consecutive rows (up to the main diagonal) gives A032434.
The periods of the rows, (1, 2, 6, 12, 60, 60, 420, 840, ...), is given by A003418.
FORMULA
T(1,k) = 1; for n > 1: T(n,k) = ((T(n-1,k) + k - 1) mod n) + 1.
EXAMPLE
.n\k 1 2 3 4 5 6 7 8 9 10
----------------------------------
.1 | 1 1 1 1 1 1 1 1 1 1
.2 | 2 1 2 1 2 1 2 1 2 1
.3 | 3 3 2 2 1 1 3 3 2 2
.4 | 4 1 1 2 2 3 2 3 3 4
.5 | 5 3 4 1 2 4 4 1 2 4
.6 | 6 5 1 5 1 4 5 3 5 2
.7 | 7 7 4 2 6 3 5 4 7 5
.8 | 8 1 7 6 3 1 4 4 8 7
.9 | 9 3 1 1 8 7 2 3 8 8
10 | 10 5 4 5 3 3 9 1 7 8
MATHEMATICA
T[n_, k_] := T[n, k] = If[n == 1, 1, Mod[T[n-1, k]+k-1, n]+1];
Table[T[n-k+1, k], {n, 1, 13}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 04 2023 *)
CROSSREFS
Cf. A000027 (k = 1), A006257 (k = 2), A054995 (k = 3), A088333 (k = 4), A181281 (k = 5), A360268 (k = 6), A178853 (k = 7), A109630 (k = 8).
Cf. A003418, A007495 (main diagonal), A032434, A198788, A198790.
Sequence in context: A029284 A123275 A112544 * A134521 A131375 A358169
KEYWORD
nonn,easy,tabl
AUTHOR
STATUS
approved