login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A032434 Triangle read by rows: last survivors of Josephus elimination process. 13
1, 2, 1, 3, 3, 2, 4, 1, 1, 2, 5, 3, 4, 1, 2, 6, 5, 1, 5, 1, 4, 7, 7, 4, 2, 6, 3, 5, 8, 1, 7, 6, 3, 1, 4, 4, 9, 3, 1, 1, 8, 7, 2, 3, 8, 10, 5, 4, 5, 3, 3, 9, 1, 7, 8, 11, 7, 7, 9, 8, 9, 5, 9, 5, 7, 7, 12, 9, 10, 1, 1, 3, 12, 5, 2, 5, 6, 11, 13, 11, 13, 5, 6, 9, 6, 13, 11, 2, 4, 10, 8, 14, 13, 2, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

T(n,k) is the surviving integer under the following elimination process. Arrange 1, 2, 3, ..., n in a circle, increasing clockwise. Starting with i = 1, delete the integer k - 1 places clockwise from i. Repeat, counting k - 1 places from the next undeleted integer, until only one integer remains. [After John W. Layman]

From Gerhard Kirchner, Jan 08 2017: (Start)

The fast recurrence is useful for large n, if single values of T(n,k) are to be determined (not the whole sequence). The number of steps is about log(n)/log(n/(k/(k-1))) instead of n, i.e., many basic steps are bypassed by a shortcut.

Example: For computing T(10^80, 7), about 1200 steps are needed, done in a second, whereas even the age of the universe would not be sufficient for the basic recurrence. Deduction of the fast recurrence and the reason for its efficiency: See the link "Fast recurrence". (End)

REFERENCES

W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed. New York: Dover, 1987, see pp. 32-36.

M. Kraitchik, "Josephus' Problem." Sec. 3.13 in Mathematical Recreations. New York: W.W. Norton, pp. 93-94, 1942.

LINKS

T. D. Noe, Rows n=1..50, flattened

Philippe Dumas, Algebraic aspects of B-regular series, inria-00074743, 1993.

Philippe Dumas, Algebraic aspects of B-regular series,  in: A. Lingas, R. Karlsson, S. Carlsson S. (eds), Automata, Languages and Programming, ICALP 1993 (Lecture Notes in Computer Science, vol 700, Springer, Berlin, Heidelberg), pp. 457-468, 1993.

L. Halbeisen and N. Hungerbühler, The Josephus Problem, preprint, 1997.

L. Halbeisen and N. Hungerbühler, The Josephus Problem, preprint, 1997.

L. Halbeisen and N. Hungerbühler, The Josephus Problem, Journal de Théorie des Nombres de Bordeaux 9 (1997), 303-318.

Gerhard Kirchner, Fast recurrence.

A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, preprint, 1991. [Cached copy, with permission]

A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33 (1991), 235-240.

Eric Weisstein's World of Mathematics, Josephus Problem.

Wikipedia, Josephus problem.

Index entries for sequences related to the Josephus problem

FORMULA

Recurrence: T(1, k) = 1, T(n, k) = (T(n-1, k) + k) mod n if this is nonzero and n if not.

From Gerhard Kirchner, Jan 08 2017: (Start)

The same recurrence without these conditions:

T(1, k) = 1,  T(n, k) = 1 + (T(n-1, k) + k - 1) mod n.

This "basic" recurrence is used in the following:

Fast recurrence (n >= k):

z(1) = 1, r(1) = 1,

if z(m) < k-1 then

  z(m+1) = z(m) + 1,

  r(m+1) = 1 + (r(m)+k-1) mod z(m+1) (basic recurrence),

else

  e(m) = -z(m) mod (k-1),

  if r(m) + e(m) <= 0 then e(m) -> e(m) + k - 1,

  z(m+1) = z(m) + (z(m) + e(m))/(k-1),

  r(m+1) = r(m) + e(m).

Result for m = M with z(M) <= n < z(M+1):

T(n,k) = r(M) + k(n - z(M)). (End)

From Gerhard Kirchner, Jan 12 2017: (Start)

Another fast (and shorter) recurrence is given in "Functional iteration and the Josephus problem", p. 1, (see link):

D(m,k) = ceiling(k/(k-1)*D(m-1,k)), m >= 1; D(0,k)=1.

Result for m with D(m-1,k) <= (k-1)*n < D(m,k):

T(n,k) = k*n + 1 - D(m,k). (End)

EXAMPLE

Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins

  1;

  2, 1;

  3, 3, 2;

  4, 1, 1, 2;

  5, 3, 4, 1, 2;

  6, 5, 1, 5, 1, 4;

  7, 7, 4, 2, 6, 3, 5;

  ...

Fast recurrence for n = 7 and k = 3:

m =    1 2 3 4 5 6,

z(m) = 1 2 3 4 6 9,

r(m) = 1 2 2 1 1,

z(6) > n => M = 5.

Result: T(7,3) = r(5) + 3*(n - z(5)) = 4.

MATHEMATICA

t[1, k_] = 1; t[n_, k_] := t[n, k] = If[m = Mod[t[n-1, k] + k, n]; m != 0, m, n]; Flatten[ Table[ t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, Sep 25 2012 *)

PROG

(PARI) T(n, k)=local(t): if(n<2, n>0, t=(T(n-1, k)+k)%n: if(t, t, n))

CROSSREFS

Cf. A032435, A032436, A321781.

Second column is A006257, third column is A054995. Diagonal T(n, n) is A007495.

Sequence in context: A287618 A123143 A128133 * A002347 A006642 A332435

Adjacent sequences:  A032431 A032432 A032433 * A032435 A032436 A032437

KEYWORD

nonn,tabl,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by Ralf Stephan, May 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 03:16 EDT 2021. Contains 347698 sequences. (Running on oeis4.)