OFFSET
0,8
FORMULA
Sum_{0<=k<=n} T(n,k)*2^k = A063376(n-1).
G.f.: (1-(y+2)*x+y*x^2)/((1-x*y)*(1-x*(y+2))).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n>2, T(0,0) = T(1,1) = T(2,2) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
EXAMPLE
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 4, 6, 3, 1
0, 8, 16, 12, 4, 1
0, 16, 40, 40, 20, 5, 1
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Oct 30 2011
STATUS
approved