login
A198793
Triangle T(n,k), read by rows, given by (1,0,0,1,0,0,0,0,0,0,0,...) DELTA (0,1,1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 16, 8, 0, 1, 5, 20, 40, 40, 16, 0, 1, 6, 30, 80, 120, 96, 32, 0, 1, 7, 42, 140, 280, 336, 224, 64, 0, 1, 8, 56, 224, 560, 896, 896, 512, 128, 0, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 0
OFFSET
0,8
COMMENTS
Mirror image of A198792.
Variant of A082137.
FORMULA
Sum_ {0<=k<=n} T(n,k) = A124302(n).
G.f.:(1-x*(1+2y)+x^2*y)/((1-x)*(1-(1+2y)*x)).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) for n>2, T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 10 2013
EXAMPLE
Triangle begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 4, 0
1, 4, 12, 16, 8, 0,
1, 5, 20, 40, 40, 16, 0
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Oct 30 2011
STATUS
approved