login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351339
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is Sum_{j=0..n} k^j * j^(n-j).
1
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 18, 9, 0, 1, 5, 20, 48, 58, 23, 0, 1, 6, 30, 100, 201, 202, 66, 0, 1, 7, 42, 180, 516, 885, 762, 210, 0, 1, 8, 56, 294, 1105, 2756, 4116, 3114, 733, 0, 1, 9, 72, 448, 2094, 6955, 15300, 20298, 13754, 2781, 0
OFFSET
0,8
FORMULA
G.f. of column k: Sum_{j>=0} (k*x)^j/(1 - j*x).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 4, 18, 48, 100, 180, 294, ...
0, 9, 58, 201, 516, 1105, 2094, ...
0, 23, 202, 885, 2756, 6955, 15198, ...
0, 66, 762, 4116, 15300, 45030, 112686, ...
MATHEMATICA
T[0, k_] := 1; T[n_, 0] = 0; T[n_, k_] := Sum[k^j * j^(n - j), {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 08 2022 *)
PROG
(PARI) T(n, k) = sum(j=0, n, k^j*j^(n-j));
CROSSREFS
Columns k=0..3 give A000007, A026898(n-1), A351279, A351282.
Main diagonal gives A351340.
Sequence in context: A342120 A198793 A085388 * A361432 A294498 A292860
KEYWORD
nonn,tabl,easy
AUTHOR
Seiichi Manyama, Feb 08 2022
STATUS
approved