login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292860
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1)).
11
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 5, 0, 1, 4, 12, 22, 15, 0, 1, 5, 20, 57, 94, 52, 0, 1, 6, 30, 116, 309, 454, 203, 0, 1, 7, 42, 205, 756, 1866, 2430, 877, 0, 1, 8, 56, 330, 1555, 5428, 12351, 14214, 4140, 0, 1, 9, 72, 497, 2850, 12880, 42356, 88563, 89918, 21147, 0
OFFSET
0,8
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} k^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, k). - Peter Luschny, Dec 23 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 6, 12, 20, 30, 42, ...
0, 5, 22, 57, 116, 205, 330, ...
0, 15, 94, 309, 756, 1555, 2850, ...
0, 52, 454, 1866, 5428, 12880, 26682, ...
0, 203, 2430, 12351, 42356, 115155, 268098, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
A[0, _] = 1; A[n_ /; n >= 0, k_ /; k >= 0] := A[n, k] = k*Sum[Binomial[n-1, j]*A[j, k], {j, 0, n-1}]; A[_, _] = 0;
Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 13 2021 *)
A292860[n_, k_] := BellB[n, k]; Table[A292860[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)
CROSSREFS
Rows n=0..2 give A000012, A001477, A002378.
Main diagonal gives A242817.
Same array, different indexing is A189233.
Cf. A292861.
Sequence in context: A351339 A361432 A294498 * A265609 A362125 A261718
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 25 2017
STATUS
approved