|
|
A027710
|
|
Number of ways of placing n labeled balls into n unlabeled (but 3-colored) boxes.
|
|
35
|
|
|
1, 3, 12, 57, 309, 1866, 12351, 88563, 681870, 5597643, 48718569, 447428856, 4318854429, 43666895343, 461101962108, 5072054649573, 57986312752497, 687610920335610, 8442056059773267, 107135148331162767, 1403300026585387686, 18946012544520590991
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 3 labeled boxes. - Peter Bala, Mar 23 2013
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 3*(x/(1-x))*A(x/(1-x)) = A(x) - 1; thrice the binomial transform equals the sequence shifted one place left. - Paul D. Hanna, Dec 08 2003
PE=exp(matpascal(5))/exp(1); A = PE^3; a(n)= A[ n,1 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^3; a(n)=A[ n,1]. - Gottfried Helms, Apr 08 2007
G.f.: (G(0) - 1)/(x-1)/3 where G(k) = 1 - 3/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-3*x), where T(k) = 1 - 3*x^2*(k+1)/( 3*x^2*(k+1) - (1-3*x-x*k)*(1-4*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) ~ n^n * exp(n/LambertW(n/3)-3-n) / (sqrt(1+LambertW(n/3)) * LambertW(n/3)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 3^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019
|
|
MAPLE
|
b:= proc(n, m) option remember; `if`(n=0,
1, m*b(n-1, m)+3*b(n-1, m+1))
end:
a:= n-> b(n, 0):
|
|
MATHEMATICA
|
colors=3; Array[ bell, 25 ]; For[ x=1, x<=25, x++, bell[ x ]=0 ]; bell[ 1 ]=colors;
Print[ "1 ", colors ]; For[ n=2, n<=25, n++, bell[ n ]=colors*bell[ n-1 ];
For[ i=1, n-i>1, i++, bell[ n-i ]=bell[ n-i ]*(n-i)+colors*bell[ n-i-1 ] ];
bellsum=0; For[ t=0, t<n, t++, bellsum=bellsum+bell[ n-t ] ]; Print[ n, " ", bellsum ] ]
|
|
PROG
|
(PARI) a(n)=if(n<0, 0, n!*polcoeff(exp(3*(exp(x+x*O(x^n))-1)), n))
(Sage) from sage.combinat.expnums import expnums2
|
|
CROSSREFS
|
Cf. A000110, A001861, A056857, A078937, A078938, A078940, A078944, A078945, A129323, A129324, A129325, A129327, A129328, A129329, A129331, A129332, A129333, A144180, A144223, A144263, A189233, A221159, A221176.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|