OFFSET
0,2
REFERENCES
F. Harary and H. Harborth, Extremal Animals, Journal of Combinatorics, Information & System Sciences, Vol. 1, No 1, 1-8 (1976).
W. C. Yang, Optimal polyform domain decomposition (PhD Dissertation), Computer Sciences Department, University of Wisconsin-Madison, 2003.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Greg Malen, Érika Roldán, and Rosemberg Toalá-Enríquez, Extremal {p, q}-Animals, Ann. Comb. (2023). See Corollary 1.9 at p. 8.
Henri Picciotto, Geometry Labs, Labs 8.1-8.3.
J. Yackel, R. R. Meyer and I. Christou, Minimum-perimeter domain assignment, Mathematical Programming, vol. 78 (1997), pp. 283-303.
Jason R. Zimba, Solution to Perimeter Problem, Jan 23 2015
FORMULA
a(n) = 2*ceiling(2*sqrt(n)).
a(n) = 2*A027434(n) for n > 0. - Tanya Khovanova, Mar 04 2008
EXAMPLE
a(5) = 10 because we can arrange 5 squares into 2 rows, with 2 squares in the top row and 3 squares in the bottom row. This shape has perimeter 10, which is minimal for 5 squares.
MAPLE
interface(quiet=true); for n from 0 to 100 do printf("%d, ", 2*ceil(2*sqrt(n))) od;
MATHEMATICA
Table[2*Ceiling[2*Sqrt[n]], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 01 2014 *)
PROG
(Haskell)
a027709 0 = 0
a027709 n = a027434 n * 2 -- Reinhard Zumkeller, Mar 23 2013
(Magma) [2*Ceiling(2*Sqrt(n)): n in [0..100]]; // Vincenzo Librandi, May 11 2015
(Python)
from math import isqrt
def A027709(n): return 1+isqrt((n<<2)-1)<<1 if n else 0 # Chai Wah Wu, Jul 28 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Custance (jevc(AT)atml.co.uk)
EXTENSIONS
Edited by Winston C. Yang (winston(AT)cs.wisc.edu), Feb 02 2002
STATUS
approved