login
A189233
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)).
16
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1
OFFSET
0,8
COMMENTS
A(n,k) is the n-th moment of a Poisson distribution with mean = k. - Geoffrey Critzer, Dec 23 2018
LINKS
E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
FORMULA
E.g.f. of column k: exp(k*(e^x-1)).
A(n,1) = A000110(n), A(n, -1) = A000587(n).
A(n,k) = BellPolynomial(n, k). - Geoffrey Critzer, Dec 23 2018
A(n,k) = Sum_{i=0..n} Stirling2(n,i)*k^i. - Vladimir Kruchinin, Apr 12 2019
EXAMPLE
Square array begins:
A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
A001477 0, 1, 2, 3, 4, 5, 6, 7, ...
A002378 0, 2, 6, 12, 20, 30, 42, 56, ...
A033445 0, 5, 22, 57, 116, 205, 330, 497, ...
0, 15, 94, 309, 756, 1555, 2850, 4809, ...
0, 52, 454, 1866, 5428, 12880, 26682, 50134, ...
MAPLE
# Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
expnums := proc(k, n) option remember; local j;
`if`(n = 0, 1, (1+add(binomial(n-1, j-1)*expnums(k, n-j), j = 1..n-1))*k) end:
A189233_array := (k, n) -> expnums(k, n):
seq(print(seq(A189233_array(k, n), k = 0..7)), n = 0..5);
A189233_egf := k -> exp(k*(exp(x)-1));
T := (n, k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
seq(lprint(seq(T(n, k), k = 0..7)), n = 0..5):
# alternative Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, _] = 1; a[n_?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid (* Geoffrey Critzer, Dec 23 2018 *)
PROG
(Maxima)
A(n, k):=if k=0 and n=0 then 1 else if k=0 then 0 else sum(stirling2(n, i)*k^i, i, 0, n); /* Vladimir Kruchinin, Apr 12 2019 */
CROSSREFS
Main diagonal gives A242817.
Sequence in context: A067347 A120568 A321960 * A242153 A065066 A266291
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 18 2011
STATUS
approved