OFFSET
0,8
COMMENTS
A(n,k) is the n-th moment of a Poisson distribution with mean = k. - Geoffrey Critzer, Dec 23 2018
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5150
E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
Peter Luschny, Set partitions and Bell numbers
FORMULA
E.g.f. of column k: exp(k*(e^x-1)).
A(n,k) = BellPolynomial(n, k). - Geoffrey Critzer, Dec 23 2018
A(n,k) = Sum_{i=0..n} Stirling2(n,i)*k^i. - Vladimir Kruchinin, Apr 12 2019
EXAMPLE
MAPLE
expnums := proc(k, n) option remember; local j;
`if`(n = 0, 1, (1+add(binomial(n-1, j-1)*expnums(k, n-j), j = 1..n-1))*k) end:
A189233_array := (k, n) -> expnums(k, n):
seq(print(seq(A189233_array(k, n), k = 0..7)), n = 0..5);
A189233_egf := k -> exp(k*(exp(x)-1));
T := (n, k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
seq(lprint(seq(T(n, k), k = 0..7)), n = 0..5):
# alternative Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, _] = 1; a[n_?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid (* Geoffrey Critzer, Dec 23 2018 *)
PROG
(Maxima)
A(n, k):=if k=0 and n=0 then 1 else if k=0 then 0 else sum(stirling2(n, i)*k^i, i, 0, n); /* Vladimir Kruchinin, Apr 12 2019 */
CROSSREFS
Main diagonal gives A242817.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 18 2011
STATUS
approved