login
A242153
Number T(n,k) of ascent sequences of length n with exactly k flat steps; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
17
1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 16, 20, 12, 4, 1, 0, 61, 80, 50, 20, 5, 1, 0, 271, 366, 240, 100, 30, 6, 1, 0, 1372, 1897, 1281, 560, 175, 42, 7, 1, 0, 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0, 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0
OFFSET
0,7
COMMENTS
In general, column k is asymptotic to Pi^(2*k-5/2) / (k! * 6^(k-2) * sqrt(3) * exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
EXAMPLE
Triangle T(n,k) begins:
00: 1;
01: 1, 0;
02: 1, 1, 0;
03: 2, 2, 1, 0;
04: 5, 6, 3, 1, 0;
05: 16, 20, 12, 4, 1, 0;
06: 61, 80, 50, 20, 5, 1, 0;
07: 271, 366, 240, 100, 30, 6, 1, 0;
08: 1372, 1897, 1281, 560, 175, 42, 7, 1, 0;
09: 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0;
10: 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0;
...
The 15 ascent sequences of length 4 (dots denote zeros) with their number of flat steps are:
01: [ . . . . ] 3
02: [ . . . 1 ] 2
03: [ . . 1 . ] 1
04: [ . . 1 1 ] 2
05: [ . . 1 2 ] 1
06: [ . 1 . . ] 1
07: [ . 1 . 1 ] 0
08: [ . 1 . 2 ] 0
09: [ . 1 1 . ] 1
10: [ . 1 1 1 ] 2
11: [ . 1 1 2 ] 1
12: [ . 1 2 . ] 0
13: [ . 1 2 1 ] 0
14: [ . 1 2 2 ] 1
15: [ . 1 2 3 ] 0
There are 5 sequences without flat steps, 6 with one flat step, etc., giving row [5, 6, 3, 1, 0] for n=4.
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
`if`(j=i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][ b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
CROSSREFS
Row sums give A022493.
T(2n,n) gives A242164.
Main diagonal and lower diagonals give: A000007, A000012, A000027(n+1), A002378(n+1), A134481(n+1), A130810(n+4).
Cf. A137251 (the same for ascents), A238858 (the same for descents).
Sequence in context: A120568 A321960 A189233 * A065066 A266291 A064045
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, May 05 2014
STATUS
approved