login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138265
Number of upper triangular zero-one matrices with n ones and no zero rows or columns.
19
1, 1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945, 1704439030, 17003262470, 180011279335, 2015683264820, 23801055350435, 295563725628564, 3850618520827590, 52514066450469255, 748191494586458700, 11115833059268126770
OFFSET
0,4
COMMENTS
Row sums of A193357.
This is also the number of rigid unlabeled interval orders with n points (see Brightwell-Keller, Theorem 2; or Dukes-Kitaev-Remmel-Steingrímsson, Theorem 8). - N. J. A. Sloane, Dec 04 2011 [Corrected by Vít Jelínek, Sep 04 2014.]
Number of length-n ascent sequences without flat steps (i.e., no two adjacent digits are equal). An ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(k)>=0 and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) gives the number of ascents of its argument. [Joerg Arndt, Nov 05 2012]
LINKS
G. E. Andrews and J. A. Sellers, Congruences for the Fishburn Numbers, arXiv preprint arXiv:1401.5345 [math.NT], 2014 (see final paragraph of text).
George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, arXiv:1309.6669 [math.CO], 2013.
George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187.
Graham Brightwell and Mitchel T. Keller, Asymptotic Enumeration of Labelled Interval Orders, arXiv 1111.6766 [math.CO], 2011.
Kathrin Bringmann, Yingkun Li, and Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, vol.41, pp.183-196, (October-2014); preprint.
Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, A Combinatorial Study of Async/Await Processes, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
M. Dukes, S. Kitaev, J. Remmel, and E. Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, arXiv:1006.2696 [math.CO], 2010.
M. Dukes, S. Kitaev, J. Remmel, and E. Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, Journal of Combinatorics, Volume 2, Issue 1, 2011, pp. 139-163.
F. Garvan, Congruences and relations for the r-Fishburn numbers, arXiv:1406.5611 [math.NT], 2014.
Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
V. Jelínek, Counting self-dual interval orders, arXiv:1106.2261 [math.CO], 2011.
V. Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614.
V. Jelinek, Catalan pairs and Fishburn triples, Adv. Appl. Math. 70 (2015) 1-31
Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order (journal), published on-line, 2011.
Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
FORMULA
G.f.: Sum_{n>=0} (Product_{i=1..n} 1-1/(1+x)^i).
G.f.: Sum_{n>=0} (1+x)^(n+1)*Product_{i=1..n} (1-(1+x)^i)^2. Proved by Bringmann-Li-Rhoades, and by Andrews-Jelínek. - Vít Jelínek, Sep 04 2014
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A079144(k). a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n-1,k-1)*A022493(k).
G.f.: B(x/(1+x)) where B(x) is the g.f. of A022493; g.f.: Q(0,u) where u=x/(1+x), Q(k,u) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1,u) )); (continued fraction). - Sergei N. Gladkovskii, Oct 03 2013
Asymptotics (Brightwell and Keller, 2011): a(n) ~ 12*sqrt(3)/(exp(Pi^2/12)*Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014
From Vít Jelínek, Sep 04 2014: (Start)
For each m, a(5m+4) mod 5 = 0. Conjectured by Andrews-Sellers, and proved by Garvan (see Remark 1.4(ii) in Garvan's paper).
For each m, a(5m+1) mod 5 = a(5m+2) mod 5 = 3*a(5m+3) mod 5. Proved by Garvan (see (1.17) in Garvan's paper).
The limit a(n)/A022493(n) is equal to exp(-Pi^2/6). This corresponds to the asymptotic probability that a random unlabeled interval order is rigid (See Brightwell-Keller; or Jelínek, Fact 5.2). (End)
Conjectural g.f.: 1 + Sum_{n >= 0} n/(1+x)^(n+1) * (Product_{i = 1..n} 1 - 1/(1+x)^i). Cf. A194530. - Peter Bala, Aug 21 2023
EXAMPLE
From Joerg Arndt, Nov 05 2012: (Start)
The a(4) = 5 such matrices with 4 ones are (dots for zeros):
1 . . . 1 1 . 1 . 1 1 1 . 1 . .
. 1 . . . . 1 . 1 . . 1 . . 1 1
. . 1 . . . 1 . . 1 . . 1 . . 1
. . . 1
The a(5)=16 ascent sequences without flat steps are (dots for zeros):
[ 1] [ . 1 . 1 . ]
[ 2] [ . 1 . 1 2 ]
[ 3] [ . 1 . 1 3 ]
[ 4] [ . 1 . 2 . ]
[ 5] [ . 1 . 2 1 ]
[ 6] [ . 1 . 2 3 ]
[ 7] [ . 1 2 . 1 ]
[ 8] [ . 1 2 . 2 ]
[ 9] [ . 1 2 . 3 ]
[10] [ . 1 2 1 . ]
[11] [ . 1 2 1 2 ]
[12] [ . 1 2 1 3 ]
[13] [ . 1 2 3 . ]
[14] [ . 1 2 3 1 ]
[15] [ . 1 2 3 2 ]
[16] [ . 1 2 3 4 ]
(End)
MAPLE
g:=sum(product(1-1/(1+x)^i, i=1..n), n=0..35): gser:=series(g, x=0, 30): seq(coeff(gser, x, n), n=0..22); # Emeric Deutsch, Mar 23 2008
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(
`if`(i=j, 0, b(n-1, j, t+`if`(j>i, 1, 0))), j=0..t+1))
end:
a:= n-> b(n-1, 0$2):
seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2012, Jan 14 2015
MATHEMATICA
max = 25; g = Sum[Product[1 - 1/(1 - x)^i, {i, 1, n}], {n, 0, max}]; gser = Series[g, {x, 0, max}]; a[n_] := SeriesCoefficient[gser, {x, 0, n}]; Table[a[n] // Abs, {n, 0, max-1}] (* Jean-François Alcover, Jan 24 2014, after Emeric Deutsch *)
PROG
(Sage) # Adaptation of the Maple program by Alois P. Heinz:
@CachedFunction
def b(n, i, t):
if n<1: return 1
return sum(b(n-1, j, t+(j>i)) for j in range(t+2))
def a(n):
if n<1: return 1
return sum((-1)^(n-k)*binomial(n-1, k-1)*b(k-1, 0, 0) for k in range(n+1))
[a(n) for n in range(33)]
# Joerg Arndt, Feb 26 2014
CROSSREFS
Column k=0 of A242153.
Column k=1 of A264909.
Row sums of A137252.
Sequence in context: A303058 A322616 A178123 * A275711 A163747 A346838
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 10 2008, Mar 11 2008
EXTENSIONS
More terms from Emeric Deutsch, Mar 23 2008
STATUS
approved