login
A275711
Nearest integer to 2*n!*(2/Pi)^(n+1).
1
1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353791, 2702767, 22368251, 199360995, 1903757268, 19391512295, 209865342434, 2404879677510, 29088885104489, 370371188272931, 4951498052966308, 69348874393874527, 1015423886503257017, 15514534163575397655
OFFSET
0,4
COMMENTS
For n odd, approximation to the tangent (or "Zag") numbers A000182. For n even, approximation to the secant (or "Zig") numbers A000364. The first difference from the Euler (or "up/down") numbers A000111 occurs for a(11)=353791 /= A000111(11)=353792.
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, pages 2-5.
FORMULA
a(n) = round (2*n!*(2/Pi)^(n+1)).
MATHEMATICA
Table[Round[2*n!*(2/Pi)^(n+1)], {n, 0, 30}] (* Harvey P. Dale, Jun 18 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 06 2016
STATUS
approved