login
A275710
Decimal expansion of the Dirichlet eta function at 7.
7
9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
OFFSET
0,1
FORMULA
eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
eta(7) = Lim_{n -> infinity} A334668(n)/A334669(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021
EXAMPLE
0.99259381992283028267...
MATHEMATICA
RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
PROG
(Sage) s = RLF(0); s
RealField(110)(s)
for i in range(1, 10000): s -= (-1)^i / i^7
print(s) # Terry D. Grant, Aug 06 2016
(PARI) -polylog(7, -1) \\ Michel Marcus, Aug 20 2021
CROSSREFS
Cf. A002162 (value at 1), A013665, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275703 (value at 6), A334668, A334669, A347150, A347059.
Sequence in context: A199623 A255169 A019892 * A110639 A254273 A011211
KEYWORD
nonn,cons
AUTHOR
Terry D. Grant, Aug 06 2016
STATUS
approved