login
A347150
Decimal expansion of the Dirichlet eta function at 8.
3
9, 9, 6, 2, 3, 3, 0, 0, 1, 8, 5, 2, 6, 4, 7, 8, 9, 9, 2, 2, 7, 2, 8, 9, 2, 6, 0, 0, 8, 2, 8, 0, 3, 6, 1, 7, 8, 7, 4, 1, 2, 5, 1, 5, 9, 4, 7, 2, 8, 9, 8, 0, 6, 7, 0, 4, 5, 2, 8, 9, 0, 2, 9, 1, 9, 4, 3, 5, 9, 6, 4, 8, 2, 5, 7, 7, 5, 8, 5, 8, 9, 2, 8, 2, 8, 2, 4
OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).
FORMULA
Equals (127/128) * zeta(8).
Equals 127 * Pi^8 / 1209600.
Equals Sum_{k>=1} (-1)^(k+1) / k^8.
Equals eta(8).
EXAMPLE
0.9962330018526478992272892600828036178741251594728980...
MATHEMATICA
RealDigits[DirichletEta[8], 10, 100][[1]] (* Amiram Eldar, Aug 20 2021 *)
PROG
(PARI) -polylog(8, -1) \\ Michel Marcus, Aug 20 2021
KEYWORD
nonn,cons
AUTHOR
Sean A. Irvine, Aug 19 2021
STATUS
approved