login
A346927
Decimal expansion of the Dirichlet eta function at 10.
2
9, 9, 9, 0, 3, 9, 5, 0, 7, 5, 9, 8, 2, 7, 1, 5, 6, 5, 6, 3, 9, 2, 2, 1, 8, 4, 5, 6, 9, 9, 3, 4, 1, 8, 3, 1, 4, 2, 5, 9, 2, 9, 6, 4, 9, 6, 6, 6, 8, 9, 0, 6, 4, 7, 1, 0, 6, 8, 9, 4, 8, 7, 5, 5, 0, 6, 1, 4, 2, 4, 5, 8, 3, 8, 4, 0, 3, 8, 1, 2, 4, 4, 0, 7, 9, 8, 5
OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).
FORMULA
Equals 73 * Pi^10 / (2^9 * 3^5 * 5 * 11).
Equals (511/512) * zeta(10).
Equals Sum_{k>=1} (-1)^(k+1) / k^10.
Equals eta(10).
EXAMPLE
0.999039507598271565639221845699341831425929649666890...
MATHEMATICA
RealDigits[DirichletEta[10], 10, 100][[1]] (* Amiram Eldar, Aug 08 2021 *)
PROG
(PARI) -polylog(10, -1) \\ Michel Marcus, Aug 08 2021
KEYWORD
nonn,cons
AUTHOR
Sean A. Irvine, Aug 07 2021
STATUS
approved