login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339745
Decimal expansion of Product_{n>=2} (1 - n^(-10)).
1
9, 9, 9, 0, 0, 5, 4, 4, 2, 4, 8, 0, 9, 8, 9, 4, 7, 5, 2, 7, 3, 7, 8, 4, 5, 3, 5, 8, 5, 4, 2, 2, 7, 2, 4, 5, 8, 6, 0, 5, 9, 0, 9, 7, 3, 8, 5, 3, 6, 4, 7, 3, 6, 9, 0, 8, 2, 2, 8, 9, 6, 2, 3, 9, 9, 2, 8, 9, 5, 9, 9, 4, 1, 9, 5, 9, 8, 9, 8, 1, 0, 0, 7, 4, 1, 1, 8, 6, 0, 3, 5, 0, 2, 7, 7, 3, 1, 7, 1, 3, 0, 5, 0, 9, 0, 6
OFFSET
0,1
FORMULA
Equals (cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4).
Equals exp(Sum_{j>=1} (1 - zeta(10*j))/j).
EXAMPLE
0.99900544248098947527378453585422724586059097385364736908229...
MAPLE
evalf((cosh(sqrt((5 - sqrt(5))/2)*Pi) + sin(sqrt(5)*Pi/2)) * (cosh(sqrt((5 + sqrt(5))/2)*Pi) - sin(sqrt(5)*Pi/2)) / (40*Pi^4), 100);
MATHEMATICA
RealDigits[(Cosh[Sqrt[(5 - Sqrt[5])/2]*Pi] + Sin[Sqrt[5]*Pi/2]) * (Cosh[Sqrt[(5 + Sqrt[5])/2]*Pi] - Sin[Sqrt[5]*Pi/2]) / (40*Pi^4), 10, 100][[1]]
PROG
(PARI) exp(suminf(j=1, (1 - zeta(10*j))/j))
(PARI) prodinf(n=2, 1-1/n^10) \\ Michel Marcus, Dec 15 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Dec 15 2020
STATUS
approved