login
A139345
Decimal expansion of sine of the golden ratio. That is, the decimal expansion of sin((1+sqrt(5))/2).
8
9, 9, 8, 8, 8, 4, 5, 0, 9, 0, 9, 4, 8, 8, 4, 7, 9, 8, 8, 3, 3, 2, 6, 8, 2, 4, 2, 6, 3, 0, 1, 2, 9, 0, 4, 4, 6, 3, 8, 6, 5, 1, 1, 9, 2, 1, 2, 7, 0, 5, 7, 4, 4, 3, 4, 5, 5, 3, 9, 9, 6, 6, 8, 8, 1, 0, 7, 1, 8, 2, 3, 9, 1, 8, 2, 7, 9, 9, 5, 4, 0, 9, 2, 6, 6, 8, 5, 3, 3, 6, 0, 4, 0, 4, 4, 6, 0, 2, 7, 1, 8, 5, 2, 1
OFFSET
0,1
COMMENTS
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019
LINKS
Mohammad K. Azarian, Problem 123, Missouri Journal of Mathematical Sciences, Vol. 10, No. 3 (Fall 1998), p. 176; Solution, ibid., Vol. 12, No. 1 (Winter 2000), pp. 61-62.
FORMULA
Equals sin(A001622).
Equals 1/A139350. - Amiram Eldar, Feb 07 2022
EXAMPLE
0.99888450909488479883326824263012904463865119212705...
MATHEMATICA
RealDigits[Sin[GoldenRatio], 10, 100][[1]] (* Amiram Eldar, Feb 07 2022 *)
PROG
(PARI) sin((1+sqrt(5))/2) \\ Charles R Greathouse IV, May 13 2019
KEYWORD
nonn,cons
AUTHOR
Mohammad K. Azarian, Apr 15 2008
EXTENSIONS
Leading zero removed by R. J. Mathar, Feb 05 2009
STATUS
approved