login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094214
Decimal expansion of 1/phi = phi - 1.
72
6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4
OFFSET
0,1
COMMENTS
Edge length of a regular decagon with unit circumradius. - Stanislav Sykora, May 07 2014
The value a+0i is the only invariant point of the complex-plane endomorphism M(z)=sqrt(2-sqrt(2+z)), and also its unique attractor, with the iterations converging exponentially from any starting complex value. Hence the infinite radical formula. - Stanislav Sykora, Apr 29 2016
With a minus sign, this constant is called beta and shares many identities with phi = A001622 (also called alpha); e.g., beta * phi = -1, Lucas numbers L(n) = A000032(n) = phi^n + beta^n. - Andrés Ventas, Apr 23 2022
LINKS
Aziz El Kacimi, Des triangles dorés, Images des Mathématiques, CNRS, 2016 (in French).
Eric Weisstein's World of Mathematics, Decagon.
Eric Weisstein's World of Mathematics, Golden Ratio Conjugate.
FORMULA
Equals sqrt(2-sqrt(2+sqrt(2-sqrt(2+ ...)))). - Stanislav Sykora, Apr 29 2016
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!-8*n!^2)/(2*n!^2*3^(2*n+2)).
Equals -1/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Equals i^(4/5) + i^(-4/5). - Gary W. Adamson, Feb 05 2022
From Andrés Ventas, Apr 23 2022: (Start)
Equals (sqrt(5)-1)/2.
Equals 2*sin(Pi/10). (End)
Equals tan(arctan(2)/2). - Amiram Eldar, Jun 29 2023
Positive solution y to y = Integral_{0..1} x^y dx. - Andrea Pinos, Jun 24 2024
EXAMPLE
0.6180339887498948482045868343656381177203091798057628621354486227052604628...
MATHEMATICA
RealDigits[N[GoldenRatio-1, 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011*)
PROG
(PARI) default(realprecision, 20080); x=(sqrt(5)-1)/2; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b094214.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(PARI) (sqrt(5)-1)/2 \\ Michel Marcus, Mar 21 2016
(PARI)
a(n) = floor( 10^(n+1)*(quadgen(5)-1)%10);
alist(len) = digits(floor((quadgen(5)-1)*10^len)); \\ Chittaranjan Pardeshi, May 31 2022
CROSSREFS
KEYWORD
cons,nonn,easy
AUTHOR
Cino Hilliard, May 27 2004
EXTENSIONS
Edited by Eric W. Weisstein, Apr 17 2006
STATUS
approved