OFFSET
0,3
LINKS
Seiichi Manyama, Antidiagonals n = 0..139, flattened
FORMULA
T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(2*j,j) * binomial(2*n+1,2*j).
T(0,k) = 1, T(1,k) = k+6 and n * (2*n+1) * (4*n-3) * T(n,k) = (4*n-1) * (4*(k+4)*n^2-2*(k+4)*n-k-2) * T(n-1,k) - (k-4)^2 * (n-1) * (2*n-1) * (4*n+1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 29 2020
For fixed k > 0, T(n,k) ~ (2 + sqrt(k))^(2*n + 3/2) / sqrt(8*k*Pi*n). - Vaclav Kotesovec, Aug 31 2020
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 7, 8, 9, 10, 11, ...
30, 51, 74, 99, 126, 155, ...
140, 393, 736, 1175, 1716, 2365, ...
630, 3139, 7606, 14499, 24310, 37555, ...
2772, 25653, 80464, 183195, 352716, 610897, ...
MATHEMATICA
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n + 1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Aug 25 2020
STATUS
approved