login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337464
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1+2*(k-4)*x+((k+4)*x)^2) * (1-(k+4)*x+sqrt(1+2*(k-4)*x+((k+4)*x)^2)) )).
8
1, 1, 6, 1, 5, 30, 1, 4, 11, 140, 1, 3, -6, -29, 630, 1, 2, -21, -120, -365, 2772, 1, 1, -34, -139, -266, -1409, 12012, 1, 0, -45, -92, 531, 2520, -155, 51480, 1, -1, -54, 15, 1654, 6489, 17380, 29485, 218790, 1, -2, -61, 176, 2755, 4828, -9723, -13104, 170035, 923780
OFFSET
0,3
LINKS
FORMULA
T(n,k) = Sum_{j=0..n} (-k)^(n-j) * binomial(2*j,j) * binomial(2*n+1,2*j).
T(0,k) = 1, T(1,k) = 6-k and n * (2*n+1) * (4*n-3) * T(n,k) = (4*n-1) * (-4*(k-4)*n^2+2*(k-4)*n+k-2) * T(n-1,k) - (k+4)^2 * (n-1) * (2*n-1) * (4*n+1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 29 2020
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 5, 4, 3, 2, 1, ...
30, 11, -6, -21, -34, -45, ...
140, -29, -120, -139, -92, 15, ...
630, -365, -266, 531, 1654, 2755, ...
2772, -1409, 2520, 6489, 4828, -5853, ...
MATHEMATICA
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[2*j, j] * Binomial[2*n+1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
PROG
(PARI) {T(n, k) = sum(j=0, n, (-k)^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
CROSSREFS
Columns k=0..4 give A002457, A337394, A337466, A337467, A337397.
Main diagonal gives A337465.
Sequence in context: A011439 A094774 A231925 * A193239 A023406 A138116
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Aug 28 2020
STATUS
approved