login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337397
Expansion of sqrt(2 / ( (1+64*x^2) * (1-8*x+sqrt(1+64*x^2)) )).
3
1, 2, -34, -92, 1654, 4828, -88724, -268088, 4984486, 15361708, -287691196, -898052872, 16901635516, 53234639768, -1005474931816, -3187958034544, 60375963282182, 192405594166988, -3651655920615596, -11684176213422568, 222132094724096852, 713091439789994824, -13575872676384218776
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
a(0) = 1, a(1) = 2 and n * (2*n+1) * (4*n-3) * a(n) = (4*n-1) * 2 * a(n-1) - 64 * (n-1) * (2*n-1) * (4*n+1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 29 2020
MATHEMATICA
a[n_] := Sum[(-4)^(n - k) * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 26 2020 *)
CoefficientList[Series[Sqrt[2/((1+64x^2)(1-8x+Sqrt[1+64x^2]))], {x, 0, 30}], x] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/((1+64*x^2)*(1-8*x+sqrt(1+64*x^2)))))
(PARI) {a(n) = sum(k=0, n, (-4)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
CROSSREFS
Column k=4 of A337464.
Sequence in context: A177051 A067130 A349496 * A263226 A200821 A200166
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 26 2020
STATUS
approved